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Abstract

The ability to find a low execution-cost plan efficiently over a wide domal

applicability is the core of domain-independent planning systems. The approach

investigated here to building such a planning system begins with two hypotheses:

(1) no single method will satisfy both sufficiency and efficiency for all situations;

and (2) multi-method planning can outperform single-method planning in terms

of sufficiency and efficiency. To evaluate these hypotheses, a set of single-method

planners has been constructed. The results obtained from the experiments with

these planners for the domains investigated show that these planners have trouble

performing efficiently over a wide range of problems.

As an alternative to single-method planning, multi-method planning is investi-

gated in this thesis. A multi-method planner consists of a coordinated set of meth-

0 ods which have different performance and scope. Given a set of created methods,

the key issue in multi-method planning is how to coordinate individual methods in

an efficient manner so that the multi-method planner can have high performance.

The multi-method planning framework presented here provides one way to do this

based on the notion of bias-relaxation. In a bias-relaxation multi-method plan-

ner, planning starts by trying highly restricted and efficient methods, and then

successively relaxes restrictions until a sufficient method is found.

A class of bias-relaxation multi-method planners has been developed. These

planners vary in the granularity at which individual methods are selected and

used. Depending on the granularity of method switching, two variations on strongly

monotonic multi-method planners are implemented: coarse-grained multi-method

xiii
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planners, where methods are switched on a problem-by-problem basis; and fine-

grained multi-method planners, where methods are switched on a goal-by-goal

basis.

The experimental results indicate that, at least for the domains investigated,

both coarse-grained and fine-grained multi-method planning can reduce plan length

significantly compared with single-method planning, and fine-grained planrdng can

improve the planning time significantly compared with coarse-grained and single-

method planning. Application to a simulated agent domain also shows one way

that multi-method planning can be used in more complex domains.
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Chapter 1

Introduction

Research in domain-independent planning systems has been a main theme in the

area of AI planning. These systems vary according to the way in which the search

* space is defined and traversed, the way in which plans are represented, the way in

which goal interactions are dealt with, the way in which time and resources are

handled, the way in which planning interacts with execution, and so on [Allen et

al., 1990]. Among the criteria used to evaluate these systems, three typical ones

are the amount of time required to find the plan; the execution cost of the plan

itself; and the ability to find some plan, or an optimal plan, for any problem in

an arbitrary domain. Thus, finding a low execution-cost plan efficiently over a

wide domain of applicability is the core of domain-independent planning systems.

The key issue here in building such a system is how to construct a single planning

method, or a coordinated set of different planning methods.

The hypotheses underlying this research are (1) no single method will satisfy

* both sufficiency and efficiency for all situations; and (2) multi-method planning

can outperform single-method planning in terms of sufficiency and efficiency. The

first hypothesis is based on the observation that most conventional planning sys-

tems which encode planning behaviors within a single fixed method - such as

linear planning, nonlinear planning, abstraction, and so on - have a limitation in

performing efficiently over a wide range of problems.

For example, STRIPS-type planners can generate plans quite efficiently for some

* problems by using the linearity assumption (Fikes and Nilsson, 19711. With this

0



Indal State Goal

(on C A) G2'B 01: (on AD) B
(on A Table) [2: (on B Q
(on 8 Table)

Operators

(MOVE-ONTO-TABLE <x>): (MOVE-ONTO-BLOCK <x> <y>):

- Padown block <x> onto table. - Stack block <x> onto block <y>.

Preconditions: Preconditions:
(on <x> <z>) (on <x> <z>)
(clear <x>) (clear <x>)

Add lists: (clear <y>)
(on <x> Table) (type <y> Block)
(clear <z>) Add lists:

Delete lists: (on <x> <y>)
(on <x> <z>) (clear <z>)

Delete lists:
(on <x> <z>)
(clear <y>)

Figure 1.1: The Sussman's anomaly in the blocks-world domain.

assumption, the number of goal conjuncts considered at each planning step can be

reduced, so that planning time can be saved. However, this assumption makes the

planners unable to generate an optimal plan in certain domains, and fail to find

a plan in domains with irreversible operators. Sussman's anomaly in the blocks-

world domain is a classical problem where an optimal solution cannot be found by

a linear planner [Sussman, 1973]. Figure 1.1 shows the initial state, goal conjuncts,

and operators for this problem.' Since a linear planner does not consider the other

goal conjuncts until the current goal conjunct is achieved, both goal orderings -

(on A B) followed by (on B C), or (on B C) followed by (on A B) - generate

non-optimal operator sequences.

'Throughout this thesis, variables in operators are denoted by angle brackets, am in <a>.

2



Initia Stote Goal

(st ol LocA) 01: (at Ol LocB)
(at 02 LocA) 02: (at 02 LoceB)
(at Rocket LocA)

Operatmr

(LOAD <obj>) (UNLOAD <obj>)

- Load <obj> into RockrL - Unload <objP- from RockeL

* Preconditions: Precomdidons
(at <obj> <boc>) (inside <obj> Rocket)
(at Rocket <loc>) (at Rocket <ioc>)

Add lbts: Add its:
(inside <obj> Rocket) (at <obj> <loc>)

Delete Usts: Delete lits:
(at <obj> <loc>) (inside <obj> Rocket)

(MOVE-ROCKET)

- Move Rocketfrom LrA to LocB.

Preconditions:
(at Rocket LocA)

Add lists.
(at Rocket LocB)

Delet lists:
(at Rocket LocA)

Figure 1.2: A problem in the one-way-rocket domain.

A more serious problem occurs in domains with irreversible operators. Fig-

ure 1.2 shows a problem in the one-way-rocket domain which cannot be solved by

* a linear planner [Veloso, 1989). In this problem, achieving either goal conjunct in-

dividually inhibits achieving the other goal conjunct. For example, after achieving

the first goal conjunct (at 01 LocB) by applying (LOAD 01) -+ (MOVE-ROCKET)

--+ (UNLOAD 01), the second goal conjunct (at 02 LocB) cannot be achieved be-

• cause the Rocket cannot return to pick up the remaining object.

3
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Nonlinear planners can generate optimal plans for these problems because they

are free from the linearity assumption.2 However, for other problems that could

be solved by a linear planner, nonlinear planners may be less efficient than linear

planners. For example, a nonlinear planner which uses a goal set as opposed

to a goal stack, such as NOLIMIT [Veloso, 1989], has more choices to consider

at each goal-selection point. This allows an optimal plan to be generated for a

given problem; however, the overall planning performance may be decreased by

the increased branching factor.

It has been known that partial-order planners can efficiently solve problems in

which the specific order of the plan steps is critical [Sacerdoti, 1975, Tate, 1977,

Chapman, 1987, McAllester and Rosenblitt, 1991, Barrett and Weld, 1992]. This

is done by delaying step-ordering decisions as long as possible, so that the size of

the plan space can be smaller than those of total-order planners. However, they

pay the cost of having a more complex ordering procedure [Minton et al., 1991).

For example, the partial-order planner SNLP [McAllester and Rosenblitt, 1991,

Barrett and Weld, 1992], detects a threat between a step and a causal link whenever

a new step or causal link is added. The ordering procedure searches over the space

of ordering constraints to resolve the detected threat. This scheme can be quite

effective if there are many threats in a problem. However, if there are only a few

trivially-resolvable threats in a problem, it is generally less efficient to use such a

complex threat-detecting and resolving algorithm for the entire problem.

Figure 1.3 illustrates the scope and performance for a hypothetical set of single-

method planners. The inherent trade-off between a planner's scope and its perfor-

mance, as shown in the figure, suggests that single-method planning has a limita-

tion in performing efficiently over a wide range of problems, so that a more flexible

planning approach is needed.

2The term "nonlinear" in this context implies that it is allowable to interleave operators in
service of different goal conjuncts. It does not necessarily mean that either partial-order or
least-commitment planning are used.
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Figure 1.3: Hypothetical trade-off between single-method planners' scope and per-
formance.

0
1.1 Overview of the Approach

As an alternative to single-method planning, multi-method planning is investigated

in this thesis. A multi-method planner is an integrated system which utilizes a co-

ordinated set of methods, where each method has different scope and performance

[Lee and Rosenbloom, 1992, Lee and Rosenbloom, 1993. The focus in this thesis is

on multi-method planning in a single serial environment.3 Figure 1.4 shows an ex-

* ample of a multi-method planner in which two different methods - linear planning

and nonlinear planning methods - are coordinated sequentially in a single serial

environment. In this planner, the linear method has better overall performance

than the nonlinear method, while the nonlinear method can solve more problems

than the linear method. Given a problem, the linear method is tried first to solve

that problem. If it cannot solve the problem, the nonlinear method is tried.

The potential advantage of multi-method planning over single-method planning

* is that multi-method planning can achieve both applicability and efficiency at the

same time. Theoretically, the scope of a multi-method planner can be the union of

3 1n a multi-agent environment, multi-method planning can be accomplished by running the
methods in parallel until the problem is solved via one of the methods [Bond and Gasser, 1988].

* However, detailed discussion on this issue is beyond the scope of this thesis.
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Planning Planning

Figure 1.4: An example of a multi-method planner.
0

the scopes of all individual single-method planners in the multi-method planner.

Thus, a multi-method planner is at least as applicable as the most general single-

method planner within the multi-method planner. If a single-method planner is

complete for a domain - that is, it can solve all problems in a domain - then any

multi-method planner which includes the single-method planner is also complete.

With respect to efficiency, if a multi-method planner includes a method which

is very efficient for some classes of problems, and that method can be selected

for those classes of problems without too much extra effort, then multi-method

planning can have an overall efficiency gain over single-method planning.

With this potential advantage of multi-method planning in hand, the ideal

multi-method planner would be able to solve each problem with the most efficient

method that is sufficient to solve it. In general, however, it is not known a priori

which method is the most appropriate one for a given problem. The best way to S

approach this ideal is to learn about which methods to use for which classes of

problems from a training set of problems. This type of method learning can be

accomplished by either an analytical approach or an empirical approach.
0

The analytical approach to learning is based on reasoning about why the given

training problem is solved (or cannot be solved) by the current method. If the

problem is solved by the method, one constructs an explanation which proves

that the problem is a positive instance of the goal concept 'solved'. Then, this •

6
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explanation is generalized and positive control knowledge is learned which selects

the method for later similar problems. In contrast, if the method fails to solve the

problem, one constructs an explanation which proves that the problem is a positive

instance of the goal concept 'unsolvable'. In this case, negative control knowledge

is learned which avoids the method for later similar problems.

The empirical approach to learning is based on the performance of those meth-

ods for a training set of problems. Instead of learning control knowledge by an-

alyzing a solution trace for each problem, this approach extracts the information

needed to select an appropriate method or to avoid a set of inappropriate methods

for the set of problems under a fixed distribution. Since the extracted information

is a function of the problem distribution, this approach can be used flexibly for

other problem distributions or other domains. The multi-method planning frame-

work investigated in this thesis is based on the empirical approach; however, the

analytical approach will also be discussed later in more detail.

Within the empirical multi-method planning framework, the main goal of this

research is to create a set of multi-method planners which are more efficient and

applicable than single-method planners. Towards this end, the basic issues to

be investigated are: (1) how to create individual methods which have different

performance and scope so that the created multi-method planner can have both

* highly efficient methods and highly applicable methods; and (2) how to coordinate

the created methods in an efficient manner so that the multi-method planner can

have high performance. Each of these issues is discussed in turn in the following

subsections.

1.1.1 Method Creation

In order for a multi-method planner to satisfy both efficiency and applicability,

the single methods in the multi-method planner should range from highly efficient

methods to a complete method. For this purpose, a methodology to create a set of

methods with different performance and scope is developed. This methodology is

* based on the notion of bias in planning [Rosenbloom et al., 1993]. Bias in planning

7

0



is any basis for choosing one plan over another other than plan correctness. With

the view of planning as search over a space of plans (Korf, 1987], a bias is a

restriction over the space of plans considered that determines which portion of the

entire plan space can or will be the output of the planning process. For example,

a linearity bias eliminates plans in which operators for different goal conjuncts are

interleaved.

In general, a bias can potentially reduce computational effort by reducing the

number of plans that must be examined, and it can potentially generate shorter

plans by avoiding plans containing inefficient operator sequences. However, this is

not always the case. For example, if the space eliminated by a bias is not large

enough or the eliminated space does not include a sufficient number of inefficient

plans, the bias has no effect. Whether or not these cases happen relies on the

domain characteristics. Thus, it is important to devise biases which are really

effective for a given domain in terms of performance improvement.

For a training set of problems in a given domain, a bias is called effective, if the

average planning effort for the biased method over the training problem set is less

than the average planning effort for the method that does not use that bias, and

the average length of plans generated from the biased method over the training

problem set is less than the average length of the plans generated from the method

which does not use that bias.

By varying the effective biases, a set of methods with different performance and

scope can be created. Given a set of effective biases, the most restricted method

- which uses all of the biases - is the most efficient one, but can be incomplete

if the desired plans are eliminated. On the other hand, the least restricted method

- which uses no bias - is the least efficient one, but can be a complete method

since no plans are eliminated.

1.1.2 Method Coordination

Once a set of methods with different performance and scope is created, these meth-

ods need to be coordinated efficiently so that the created multi-method planner can

8
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satisfy both efficiency and applicability. Method coordination, as used here, refers

to (1) the selection of appropriate methods as situations arise, and (2) the granu-

larity of method switching as the situational demands shift.

Method selection: For method selection, individual methods need to be or-

ganized so that a higher level control structure can determine which method to use

first and which method to use next if the current method fails. Two straightfor-

ward ways of organizing individual methods in a multi-method planner are sequen-

tial and time-shared. A sequential multi-method planner consists of a sequence of

single-method planners. A time-shared multi-method planner consists of a set of

single-method planners in which each method is active in turn for a given time

slice [Barley, 1991]. In either approach, the key issue is how to reduce the effort

wasted in using inappropriate methods.

The wasted effort in a sequential multi-method planner is the cost of trying

inappropriate earlier methods in the sequence, whereas the wasted effort in a time-

shared multi-method planner is the cost of trying all methods in the method set

* except the one that actually solves the problem. The wasted effort in sequential

multi-method planning is sensitive to the ordering of the methods because it takes

too much time if inappropriate earlier methods are not efficient enough, or in an

extreme case, it may not be able to generate a plan at all if one of the inappropriate

earlier methods does not halt. On the other hand, the wasted effort in time-

shared multi-method planning is sensitive to the number of individual methods.

Also, time-shared multi-method planning switches among methods more often than

* sequential multi-method planning, and it has more overhead for context switching.

The planning approach primarily investigated in this thesis is a special type

of sequential multi-method planning, called monotonic multi-method planning [Lee

and Rosenbloom, 1992]. In a monotonic multi-method planner, individual methods

are sequenced so that the earlier methods are more efficient and have less coverage

than the later methods. Compared with the single-method approach with planner

completeness and the time-shared multi-method approach, the monotonic multi-

* method approach can potentially generate plans more efficiently. The idea is that
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if the biases used in efficient methods can prune the search space, the problems

solvable by efficient methods should be solved more quickly, while problems requir-

ing less biases should not waste too much extra time trying out the insufficient

early methods. In this way, a monotonic multi-method planner can retain plan-

ner completeness by allowing the least restricted method to be used, while it can

generate low cost plans efficiently by using more restricted methods.

One way to construct a monotonic multi-method planner is to use the biases

which themselves increase efficiency. Individual methods are sequenced so that

the set of biases used in a method is a subset of the biases used in earlier meth-

ods, and the later methods have more coverage than the earlier methods. This

means that planning starts by trying highly efficient methods, and then succes-

sively relaxing biases until a sufficient method is found. This type of planning

is called bias-relaxation multi-method planning. A bias relaxation multi-method

planner is not necessarily a monotonic multi-method planner if there are interac-

tions among biases. However, one can generate monotonic multi-method planners

via bias-relaxation by just testing whether monotonicity holds for the created bias-

relaxation multi-method planners. In bias-relaxation multi-method planning, each

bias is evaluated independently by comparing a method which uses that bias only

and a method which uses no bias. Thus, bias-relaxation multi-method planning

has a restricted scope in creating and comparing individual methods.

Granularity of method switching: The second issue of method coordination

is the granularity at which individual methods are switched [Lee and Rosenbloom,

1993]. This issue is important in terms of a planner's performance, because the

performance of a multi-method planner can be changed according to the granularity

of shifting control from method to method. The family of multi-method planning

systems can be viewed on a granularity spectrum. At one extreme there is the

normal single-method approach, where one method is selected ahead of time for

the entire set of problems. At another point of this spectrum are coarse-grained

multi-method planners, where methods are switched for a whole problem when no

solution can be found within the current method. Toward the other extreme, there
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are fine-grained multi-method planners, where methods are switched at any point

during a problem at which a new set of subgoals is formulated. Time-shared multi-

method planners, where methods are switched based on the time slice, also can be

viewed on the spectrum.

There is a trade-off between coarse-grained multi-method planning and fine-

grained multi-method planning. A coarse-grained multi-method planner examines

all paths within the current biased space until a solution is found or all paths are

exhausted. Thus, a coarse-grained multi-method planner finds a solution within

the first method that has one at the cost of searching the entire biased space in

the worst case (unless some form of within-method learning or heuristics are used

to prune out some portions of the space, or unless the time limit is exceeded). On

the other hand, a fine-grained multi-method planner falls back on the next method

whenever the partial plan for the current solution path cannot be expanded without

violating the biases used in the current method. Thus, it can save the effort of

backtracking within the current method. However, it does not guarantee to find a

solution that may exist within the current biased space.

1.2 Implementation

A set of single-method planners and bias-relaxation multi-method planners - both

coarse-grained and fine-grained versions - have been implemented in the context

of the Soar architecture (Laird et al., 1987, Rosenbloom et al., 19911. Soar is a

* useful vehicle for this work because its impasse-driven subgoaling scheme provides

the necessary context for planning and its multiple problem-space scheme facilitates

the multi-method planning approach, though it is difficult to implement context

switching for time-shared multi-method planners in Soar.

Speed-up learning is used in both single-method planners and multi-method

planners for each problem, but only within-trial transfer was allowed; that is, rules

learned during one problem are not used for other problems. However, learned

* rules were allowed to transfer from an earlier method to a later method (for the
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same problem). That is, if a search path is evaluated within one method, and the

results of the evaluation depend only on aspects of the method that are shared

by a second method, then it should not be necessary to repeat that path when

the second method is tried. Learned rules do not transfer across trials, because

some rules are expensive so that they may increase the planning time for later

problems [Tambe and Newell, 19881. Restricting expressiveness such as by the

unique-attribute scheme can solve this problem [Tambe et al., 1990]; however this

thesis uses the multi-attribute scheme to learn rules with higher generality.

The implemented multi-method planners are compared with single-method

planners theoretically and experimentally in three domains: blocks-world, machine

shop scheduling, and a simulated agent domain. In this thesis, the focus is on plans

represented by STRIPS-like operators; however, since the multi-method framework

in this thesis is independent of the operator representation, this framework should

be extendable to planners with more expressive plan representations.

1.3 Contributions

The primary contributions of this thesis include the following:

1. A methodology for building a set of planning methods with different per-

formance and scope. A bias determines the portion of the entire plan space

considered. In particular, an effective bias improves planning performance

by reducing the number of candidate plans and generates shorter plans by

avoiding inefficient operator sequences. A methodology is developed to se-

lect a set of effective biases based on performance over a training problem

set. By varying the selected effective biases, a set of methods with different

performance and scope can be created.

2. A new planning framework for multiple methods. A new multi-method

planning framework is developed based on the relaxation of biases. Issues

12



arising in multi-method planning, such as how to efficiently coordinate in-

dividual methods within a multi-method framework and the granularity at

which methods can be switched, are investigated.

3. Performance improvement over single-method planning. Bias-relaxation

multi-method planning with various granularities of method switching pro-

vides a planning system which can improve planning efficiency and reduce

plan length without loss of planner completeness. In fact, for the domains in-

vestigated, both coarse-grained and fine-grained multi-method planning can

reduce plan length significantly compared with single-method planning, and

fine-grained planning can improve the planning time significantly compared

with coarse-grained and single-method planning.

1.4 Guide to the Thesis

The body of this thesis consists of six chapters.

Chapter 2 defines the notion of bias in planning. Examples of planning bias

are presented along with the justifications on which these biases depend. The

differences between bias and search control heuristics are described.

Chapter 3 explains two bias dimensions - goal flexibility and goal protection

and defines single-method planners that vary along these dimensions. The

implementation of these planners in Soar is described, and learning in Soar for

single-method planning is discussed. Finally, experimental results in the blocks-

world and machine-shop scheduling domains are provided.

Chapter 4 specifies how to build monotonic multi-method planners and bias-

relaxation multi-method planners from a set of single-method planners. The issue

of granularity at which individual methods can be switched is investigated, and

learning in multi-method planning is discussed. Experimental results for coarse-

grained and fine-grained multi-method planners are presented and compared with

the results for single-method planners. Finally, the performance of multi-method

* planning is compared with the performance of partial-order planning.
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Chapter 5 shows how this approach can be applied to a more complex domain

such as a simulated agent domain.

Finally, chapters 6 and 7 discuss related work and conclusions.

14



Chapter 2

Bias in Planning

Bias was originally defined in the context of concept learning from preclassified

training instances as any basis for choosing one generalization over another, other

than strict consistency with the observed training instances [Mitchell, 1980]. Trans-

ferring the notion of bias to planning, it can be defined as "any basis for choosing

one plan over another other than plan correctness", where a plan is correct if the

application of the plan transforms the initial state into the goal state [Rosenbloom

et al., 1993].

The notion of bias is useful in planning, because bias can reduce computation

0 effort by reducing the number of plans that must be examined, and it can po-

tentially generate shorter plans by avoiding plans containing inefficient operator

sequences such as ones that undo achieved goals or loop on states. The notion

is particularly useful in multi-method planning, because bias can provide a ba-

sis for building a set of planning methods with different performance and scope.

Also, method switching in multi-method planning can be easily accomplished by

changing the set of biases used in the individual methods.

This chapter begins with the notion of bias in inductive concept learning, and

then describes how this notion is applied to planning. Some examples of planning

biases are presented, and finally, the relationship between search control and bias

* is discussed.
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2.1 Bias in Inductive Learning

An induction problem is, in general, given an instance description language and

a set of training instances, to determine a generalization that is consistent with

the training instances (Mitchell, 19801. In induction, an unbiased hypothesis space,

denoted as 7, consists of every possible generalization on the instance space - that

is, the power set of the training instances. The unbiased version space, denoted as

X. g 7, is the portion of 7 that is consistent with the observed training instances.

Then, a bias b determines a biased hypothesis space, denoted as 7f C 7i, so that

the output generalization can be selected from Ii4 n V.

It has been shown that bias plays an important role in induction, because it

influences hypothesis selection [Utgoff, 1986]. Without bias, an induction system

has no basis for choosing one generalization over another. In other words, bias

enables induction systems to determine how to go beyond the training instances;

that is, which inductive leaps to make.

Bias can be either absolute or relative. An absolute bias completely removes

parts of the unbiased version space. For example, a generalization language pro-

vides an absolute bias by eliminating any element of the unbiased version space not

expressible in the language. A relative bias defines a partial order over portions of

the unbiased version space. For example, one can prefer one hypothesis to another

based on measures such as simplicity of the hypothesis [Michalski et al., 1986].

2.2 Application of Bias to Planning

As in inductive learning, the notion of bias can be formalized in planning.

Planning can be defined in terms of the notion of a problem space [Newell et al.,

1991]. A problem space consists of a set of states S, and a set of operators 0.
A problem, denoted as p = (So, S9 ), consists of two components, So E S and

Sq E S, where So is a description of an initial state of the world and S. is a partial

description of a desired state. A plan for a problem p = (So, S,) can be defined as
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a structure that represents the sequence of operators in 0 that achieves S, from

So by applying each operator to each of the resulting states in the sequence.

An unbiased plan space, denoted as P, is the "power sequence" - that is, the

set of all sequences - of the possible operators in 0.1 For a given problem p, the

unbiased plan space for p, denoted as 9P g P, is the portion of P, for which each

element of P, solves p. Then, a bias b determines the biased plan space, denoted

as Pb g P, so that the output plan can be selected from P, n V.

Figure 2.1 shows the analogy between the processes of inductive concept learn-

ing and planning. In both cases the output of the process is to be some element

of the unbiased hypothesis space that is consistent with the process's correctness

criterion. Where the two cases differ is in the definitions of "unbiased hypothesis

space" and "correctness criterion". In concept learning, the unbiased hypothesis

space is the power set of the training instances, and the correctness criterion is con-

sistency with the observed training instances. In planning, the unbiased hypothesis

space is the power sequence of the possible operators, and the correctness criterion

is whether the application of the plan achieves the goal state from the initial state.

In spite of these differences, bias together with the process's correctness criterion,

in both cases, determines which portion of the unbiased space can be the output

of the process.

As in the case of induction, an absolute use of bias in planning engenders in-

completeness in the planner. This incompleteness can be used to speed up the

planner by reducing the number of plans that the planner can possibly generate

for particular problems. However, it only really helps if the bias is an appropriate

one; otherwise, desired plans can be eliminated. A relative use of bias does not

introduce incompleteness. However, if the bias is not an appropriate one, generated

plans may not be the desired ones. Thus, in order to show that using a bias is

plausible, some form of appropriate justification is needed. For example, with a

1The specification here assumes that the plan space contains only totally-ordered sequences
of operators, but it does not rule out a search strategy that incrementally specifies an element of
the plan space by refining a partially-ordered plan structure.
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Figure 2.2: Example of the effects of a linearity bias on the plan space: (a) initial
state and goal conjuncts, (b) plan eliminated, (c) plan remaining.

independence justification, one assumes that goal conjuncts are achieved by inde-

pendent processes without interfering with other goal conjuncts in a conjunctive

goal problem. With a progress justification, one assumes that it is always possible

to move forward to solve the problem, and never required to move backward. A

boundedness justification limits the total effort that it is reasonable to expend in

solving a problem or a set of problems. In the next section, examples of planning

biases based on these justifications are presented.

2.3 Examples of Planning Biases

Two typical planning biases justified by an independence justification are lin-

earity and protection. A linearity bias removes all plans in which operators for

different unachieved goal conjuncts occur in succession; that is, once an operator

for one unachieved goal conjunct is in the plan, operators for other conjuncts can

be placed only after the first goal conjunct has been achieved. For example, given
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Figure 2.3: Example of the effects of a protection bias on the plan space: (a) initial
state and goal conjuncts, (b) plan eliminated, (c) plan remaining.

the initial state and the goal conjuncts in Figure 2.2(a), plans such as the one in

Figure 2.2(b) would be eliminated, while plans such as the one in Figure 2.2(c)

would remain. Linearity depends on an independence justification because one

assumes that while solving one goal conjunct, operators for other goal conjuncts

need not be considered.

A protection bias eliminates all plans in which an operator undoes a goal con-

junct that is either true in the initial state or established by an earlier operator

in the sequence.2 For example, given the initial state and the goal conjuncts in

Figure 2.3(a), plans such as the one in Figure 2.3(b) would be eliminated since the

2The notion of protection used here was introduced by Sussman [1973]. Other forms
of protection can be found in the planning literature. For example, one can protect the
current goal conjunct from being clobbered by other operators while regressing an opera-
tor or a goal through a partial linear plan (Warren, 1976, Waldinger, 1977]. In partial-
order planning, one can protect a causal link from being clobbered by any other plan-
ning steps, within the interval where the causal link is needed [Tate, 1977, Chapman, 1987,
Barrett and Weld, 1992].

20



jGI: (on A Table)
02: (on B Table)
03: (cc C Tabk)

Initial Sate Goal
(a)

(MOVE A Table) - (MOVE B A) -- (MOVE C Tkle) -0 (MOVE S lbi)

Farl For03 orM02

(b)

(MOVE A Table)--* (MOVE B Table) -- 0 (MOVE C Tubb)

FarOl FotG2 ForG3

(C)

Figure 2.4: Example of the effects of a directness bias on the plan space: (a) initial
state and goal conjuncts, (b) plan eliminated, (c) plan remaining.

0

operator (MOVE A Table) undoes the goal conjunct (on A B) which is established

by the earlier operator (MOVE A B), while plans such as the one in Figure 2.3(c)

would remain. Protection is based on an independence justification since one as-

sumes that while solving one goal conjunct, operators that interact negatively with

previous goal conjuncts need not be considered.

A progress justification underlies all greedy biases. For example, protection is
also justified by a progress justification, because once a goal is achieved, it would

never be undone. Another bias justified by a progress justification is directness.

A directness bias eliminates all plans in which there is at least one operator that

0 does not directly achieve a goal conjunct included in the problem definition. For

example, given the goal conjuncts and operators in Figure 2.4(a), plans such as

the one in Figure 2.4(b) would be eliminated since the operator (MOVE B A) does

not directly achieve any of the goal conjuncts in the problem definition, while

* plans such as the one in Figure 2.4(c) would remain. Directness is justified by
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Figure 2.5: Example of the effects of a goal-nonrepetition bias on the plan space:
(a) initial state and goal conjuncts, (b) plan eliminated, (c) plan remaining.

a progress justification, because whenever an operator is applied, a new goal is

always achieved, increasing the degree of goal achievement for the entire problem.

Directness is a quite interesting bias because it ensures that the number of operators

to achieve each of the goal conjuncts is bounded by one.

Biases justified by a boundedness justification include goal-depth, goal-breadth,

plan length, and goal-nonrepetition. Both goal-depth and goal-breadth limit the

size of the goal hierarchy used in planners based on means-ends analysis (MEA),

so that planning effort can be reduced. For a predefined bound n, a goal-depth

bias eliminates from the nypothesis space all plans that require more than n levels

of subgoals to generate, while a goal-breadth bias eliminates all plans that require

more than n conjunctive subgoals for a single goal. Directness is also justified by

boundedness. In fact, directness can be viewed as a special case of goal-depth bias,

since it allows no generation of subgoals, thus ensuring that the depth of the goal

hierarchy is bounded by one.
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A plan-length bias eliminates all plans which consist of a sequence of more than

n operators, for a predefined bound n, so that the length of the output plan can

be bounded. It can be used either on a problem-by-problem basis or on a goal-

by-goal basis. If plan-length is used on a problem-by-problem basis, the length of

the output plan for the entire problem is guaranteed to be no more than n. If it is

used on a goal-by-goal basis for a set of conjunctive goals, the length of the plan

for the conjunctive goals is bounded by n times the number of goal conjuncts. In

fact, directness is also a special case of goal-by-goal plan-length bias, where n = 1,

* because the length of the plan for each goal is bounded by one.

A goal-nonrepetition bias eliminates all plans that require a repetition on a goal

literal; that is, if satisfying an unmet precondition for a selected operator requires

a new goal conjunct whose literal is equivalent to the literal of its ancestor in the

goal hierarchy, then that plan would be eliminated. For example, given the goal

conjuncts and operators in Figure 2.5(a), plans such as the one in Figure 2.5(b)

would be eliminated because it requires a repetition on a goal literal - operator

* (MOVE B Table) is chosen for conjunct (cleax C), but in making it applicable,

an iterative clear conjunct (clear B) is generated (resulting in the selection of

(MOVE A D) as the first operator). On the other hand, plans such as the one in

Figure 2.5(c) would remain. The prime reason to use a goal-nonrepetition bias

is that it forces learning from non-repetitive paths by eliminating all plans that

require a repetition on a goal conjunct, so that learning specific rules for each

size of repetition can be avoided. In this way, it is closely related to Etzioni's

* [1990b] work on restricting EBL to learn from only non-recursive explanations.

This relationship will be discussed later in more detail.

* 2.4 Relationship with Search Control

As described before, bias affects the output of the planning process. However, if

bias can be incorporated directly into the planning procedure, then it can also

• have a significant impact on the efficiency of the planning process by reducing the
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number of candidate plans that are generated. In this way, bias can lead to effective

control of search.

1. If the goal of the problem is achieved, show the output plan and stop;
else continue

2. Select a goal from the goal hierarchy.

3. Select an operator to achieve the selected goal.

4. If the selected operator is applicable to the current state, create a
new state by applying the operator, and remove achieved goals from
the goal hierarchy. Go to step 1.

5. If the selected operator is not applicable to the current state, create
subgoals to establish the unmet preconditions of the operator and
add them to the goal hierarchy. Go to step 1.

Figure 2.6: A recursive planning procedure based on means- ends analysis.

For example, consider a recursive planning procedure based on means-ends

analysis, as shown in Figure 2.6 s. Table 2.1 shows the planning biases classified

according to the way they can be incorporated into this procedure. Linearity can

be incorporated into goal selection (step 2) by selecting a new goal conjunct only

after the current goal conjunct is achieved. Protection and goal-length can be in-

corporated into operator selection (step 3) by rejecting operators which violate the

criterion for the bias. Goal-depth, goal-breadth, directness, and goal-nonrepetition

can be incorporated into goal expansion (step 5) by limiting the expansion of the

goal hierarchy.

However, despite this close relationship between search control and bias, there

is a distinction between the two. Bias determines which plan is generated from

the plan space, while search strategies determine the efficiency with which that

plan is found from the search space. In general, the search space is not necessarily

equivalent to the plan space. For example, a node in the search space for a MEA-

based planner with the above procedure can be defined as a combination of the

'This algorithm is comparable to the one used in NOLIMIT [Veloso, 1989].
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* Bis ~JustifiationClass Bias Independence Progress IBoundeds

Goal selection Linearity P
Operator selection Protection o 0

Plan-length 0
Goal expansion Directness a a

Goal-depth 0
Goal-breadth 0
Goal-nonrepetition 0

Table 2.1: Examples of planning biases and their justifications classified according

* to a MEA-based planning procedure.

current state and goal hierarchy, whereas a node in the plan space for this planner

can be defined as a partial sequence of operators. Whenever an operator is applied

to the current state, a node is expanded both in the search space and the plan space.

However, if the selected operator is not applicable to the current state, a node in

the plan space is not expanded, while a node in the search space is expanded for

* the new goal hierarchy.

2.5 Summary

In this chapter, the notion of bias is applied to planning. An analogy between the

processes of concept learning and planning is presented in terms of the usage of bias

in the process. Since bias determines which portion of the unbiased space can be

* the output of the process, using an appropriate bias is critical; if it is too weak it has

no effect, but if it is too strong it can eliminate the desired output. Some examples

of planning biases are introduced which can be justified by independence, progress,

or boundedness. The relationship between search control and bias is discussed.
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Chapter 3

Single-Method Planners

As described in the introduction, the first hypothesis underlying this research is

that no single method will satisfy both sufficiency and efficiency for all situations.

The ideal way to evaluate the hypothesis would be to construct all possible single-

method planners and to evaluate their performance and scope for every possible

domain. However, this is not possible. In this research, a system is constructed

that can utilize a set of different planning methods, which vary in the amount of

bias used. These methods are implemented in the context of Soar, an architecture

which integrates basic capabilities for problem-solving, use of knowledge, learning,

and perceptual-motor behavior [Laird et al., 1987, Rosenbloom et al., 1991].

Soar has not traditionally been seen as a planning architecture, partly because

it does not create structures that resemble traditional plans, such as totally-ordered

plans or partially-ordered plans, and partly because its problem-solving approach

does not closely resemble the traditional planning methods [Rosenbloom et al.,

1993]. However, recent work on a Soar-based framework for planning has demon-

strated how versions of such standard planning methods as linear, nonlinear, and

abstraction planning can be derived from the Soar architecture [Rosenbloom et al.,

1990].

This chapter begins with an overview of planning in Soar and introduces a set

of different planning methods as implemented in Soar (version 6). The effect of

learning in these methods with respect to the performance of planning is discussed.
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Finally, these methods are evaluated experimentally in terms of planner complete-

0 ness (for sufficiency), planning time and plan length (for planning efficiency and

execution efficiency, respectively) in two domains.

3.1 Planning in Soar

3.1.1 Overview of Soar

* Soar is based on the hypothesis that all symbolic goal-oriented behavior may

be represented in terms of problem spaces [Newell et al., 19911. A problem space is

defined by a set of states and a set of operators. The states represent situations,

and the operators represent actions which apply to current states to yield new

states. Problem-solving in Soar is driven by applying operators to states within a

problem space to achieve a goal. A goal context consists of a goal, together with

the current problem space, state, and operator.

• Figure 3.1 illustrates the architectural structure of Soar. Knowledge is stored in

a permanent recognition memory and a temporary working memory. Recognition

memory consists of a set of variabilized rules, where each rule is a condition-action

pair. The conditions of each rule match against the content of working memory.

Conditions can contain variables, so that a single condition can match against

different data in working memory. If the conditions of a rule are matched, the

actions of the rule are instantiated to propose preferences that change the work-

* ing memory. The most typical preferences are feasibility (acceptable, reject) and

desirability (best, better, indifferent, worse, worst) preferences. These preferences

are held in preference memory and used by a decision procedure to determine what

changes are made to working memory.'
0 If the system does not have sufficient information about a situation to make

a decision for that situation, then an impasse arises. For example, if the system

1The current Soar version has a separate preference memory, which is not included in this
figure for simplicity.
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is unable to select the next operator from a set of candidate operators, then an

impasse, called a tie impasse (or selection impasse) arises. Other types of impasses

are generated if the system fails to generate a set of candidate operators (generation

impasse), or fails to execute the selected operator (execution impasse) [Rosenbloom

et a., 1990].

In response to an impasse, a subgoal is automatically generated. Within the

subgoal, Soar searches for more information that can lead to the resolution of the

impasse. As the result of the subgoal, new preferences are generated and new rules

are learned (via a chunking process) whose actions are based on the preferences

that are the results of the subgoal, and whose conditions are based on the working-

memory elements in supergoals that led to the results. In effect, chunking is much

like explanation-based learning [Rosenbloom and Laird, 1986].

Note that the notions of subgoal and operator in a Soar should be distinguished

from those "n traditional planning. A Soar subgoal is generated in response to an

0 impasse whenever progress cannot be made on the current goal, and terminated

when the impasse is resolved. On the other hand, a planning subgoal is generated

in response to a precondition violation and terminated when the violated condi-

tion is achieved. A precondition violation may or may not create an impasse in

0 Soar depending on whether or not knowledge to achieve the violated condition is

available in the current goal context.

In the planning framework for this research, planning goals (together with

* subgoals) and their hierarchy are explicitly represented as augmentations of Soar

states. Precondition violation is handled in a single goal context without creating a

Soar subgoal. However, if there is no information about how to apply an operator

(yielding an execution impasse) or how to select among the candidate operators

(yielding a tie impasse), a Soar subgoal is created. A planning operator is repre-

sented as a set of variabilized rules which create and apply an instantiated Soar

operator to change the current Soar state, where the current planning state and

* the goal hierarchy are represented.
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1. If the goal of the problem is achieved, stop; else continue.

2. Select an operator to achieve one of the active goal conjuncts in the
goal hierarchy.

3. If the selected operator is applicable to the current state, create a
new state by applying the operator, and remove achieved goals from
the goal hierarchy. Go to step 1.

4. If the selected operator is not applicable to the current state, create
subgoals to establish the unmet preconditions of the operator and
add them to the goal hierarchy. Go to step 2.

Figure 3.2: The planning algorithm based on means-ends analysis as implemented
in Soar.

In this work, the predominant planning method in Soar is means-ends analysis

(MEA). The version of means-ends analysis implemented in this work is close to the

algorithm described in Figure 2.6. Figure 3.2 shows the skeleton of the MEA-based

planning algorithm implemented in Soar for the framework of this thesis. There are

only two differences between this algorithm and the one shown in Figure 2.6. First,

in this algorithm, a goal conjunct is selected implicitly from the goal hierarchy when

an operator is selected in step 2. By merging two steps (goal selection and operator

selection) into a single operator selection step, the number of decisions required to

generate a plan can be reduced. Second, there is no explicit output plan to print

in step 1 in this algorithm. This is because a plan in Soar is rarely represented as

a unitary entity like a totally-ordered or partially-ordered plan. Instead, a plan in

Soar is represented as a set of control rules or a set of preferences which jointly

specify which operators should be executed at each point in time.

In the following sections, operator representation, plan representation, and

planning in Soar are described in more detail.

3.1.2 Operator Representation in Soar

In the planning framework for this thesis, the implementations of planning op-

erators are represented by three classes of variabilized rules in recognition memory
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If the problem-space is blocks-world
A There exists an active goal (on <x> <y>)
A (on <x> <y>) is not achieved

Propose an operator (MOVE <x> <y>) for (on <x> <y>)

(a) An operator proposal rule for (on <x> <y>).

If the problem-space is blocks-world
A There exists an active goal (clear <x>)
A (clear <x>) is not achieved
A There exists a block <top> on top of <x>
A There exists an object <y> which is different from <x> and <top>

Propose an operator (MOVE <top> <y>) for (dear <x>)

* (b) An operator proposal rule for (clear <x>).

Figure 3.3: Examples of operator proposal rules.

- operator proposal rules, operator application rules, and goal expansion rules

- plus instantiated operator objects in working memory. An operator proposal

rule implements a bit of means-ends analysis, determining when it is appropriate

to propose operators. This rule is instantiated (possibly multiple times) based on

the current goal hierarchy represented in the working memory, cleating a set of

instantiated Soar operators in the working memory.

Figure 3.3 shows examples of operator proposal rules in the blocks-world do-

main. In our implementation of blocks-world, there is a single general operator,

MOVE, which moves a block from one location to another. However, depending on

the type of goal this operator is trying to achieve, different operator proposal rules

can be specified, as shown in Figure 3.3(a) and (b). A single operator proposal rule

can be instantiated with different components of the state, yielding multiple instan-

tiated operators. In Figure 3.3(a), for example, if the goal of a problem is to stack

a set of n blocks, represented by (and (on Block, Block2) (on Block 2 Block3 )
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If the problem-space is block*-world
A The operator is (MOVE <x> <z>) for goal <w>
A <x> is on <y>
A <x> and <z> are clear
A <z> is the table

<x> is not on <y>
A <x> is on <z>
A <y> is clear
A <w> is achieved

(a) An operator application rule to put down a block onto the table.

If the problem-space is blocks-world
A The operator is (MOVE <x> <z>) for goal <w>
A <x> is on <y>
A <x> and <z> are clear
A <z> is a block

<x> is not on <y>
A <x> is on <z>
A <y> is clear
A <z> is not clear
A <w> is achieved

(b) An operator application rule to stack a block onto another block.

Figure 3.4: Examples of operator application rules.

... (on Block,,-, Block)), then (on <x> <y>) is instantiated with each of

the n - 1 goal conjuncts when the problem solving starts.

Once an operator has been selected for the current state by the decision pro-

cedure, it can be applied to generate a new state if its preconditions are met.

Figure 3.4 shows examples of operator application rules for the MOVE operator. In

this implementation of blocks-world, two operator application rules are used for

this operator: one to put down a block onto the table, and one to stack a block

onto another block. Once an operator has been applied, operator proposal rules
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If the problem-space is blocks-world
A The operator is (MOVE <x> <z>) for goal <w>
A <x> is not clear

Create a new goal <new> to dear <x>
A The parent of <new> is <w> in the goal hierarchy

(a) A goal expansion rule in which the block to be moved is not dear.

If the problem-space is blocks-world
A The operator is (MOVE <x> <z>) for goal <w>
A <z> is not clear

Create a new goal <new> to dear <z>
A The parent of <new> is <w> in the goal hierarchy

(b) A goal expansion rule in which the destination block is not clear.

Figure 3.5: Examples of goal expansion rules.

are matched wi the new state and the updated goal hierarchy, generating the

next set of candidate operators.

If the selected operator is not applicable, goal expansion rules (as shown in Fig-

ure 3.5) are instantiated to generate a new goal hierarchy. In effect, goal expansion

rules implement operator subgoaling in means-ends analysis.

3.1.3 Plan Representation in Soar

As described in Chapter 2, a plan for a problem can be defined as a structure

that represents the sequence of actions to be taken for that problem [Rosenbloom

et al., 1993]. With this definition of a plan in hand, two predominant structures

can be identified that serve as plans in Soar. The first structure is the set of vari-

abilized control rules in recognition memory that serves as generalized plans for

classes of potential goals. Control rules are different from operator representation

rules described in the previous section in that control rules generate instantiated
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If the problem-space is blocks.-uorld
A Goal protection is assumed to hold
A There exists an active goal (on <x> <y>)
A There exists an active goal (on <y> <z>)
A (on <x> <y>) and (on <y> <z>) are not achieved
A <x> and <y> are blocks
A <x> and <y> are dear
A The proposed operator is (MOVE <x> <y>)

The operator is worst

Figure 3.6: A generalized plan.

preferences to help select the current operator from the candidate operators, thus

yielding indirectly a sequence of operators. The second structure is the set of in-

stantiated preferences in preference memory that serves as instantiated plans for

active goals. The instantiated preferences can be generated either by the general-

ized plans or as the results of subgoals (that is, by planning).

Figure 3.6 shows an example of a generalized plan for a set of problems shown

in Figure 3.7(a). This rule implies that if goal protection is assumed to hold, one

wants a stack of at least three blocks, neither of the top two blocks (out of the

three) are in position, both of the top two blocks (out of the three) are clear, and

an operator is proposed to put the top one on the second one, then that operator is

worst. Figure 3.7(b) shows the sequence of steps to generate a sequence of operators

for a four-block-stacking problem. For each step, it shows the current state, the

goal conjuncts that have not yet been achieved, the operators proposed, and the

portion of the instantiated plan generated from the generalized plan in Figure 3.6.

Figure 3.7(c) then shows the actual operator sequence this plan generates.

The plan representation in Soar has many interesting aspects. First, the pref-

erence language has an imperative construct (best) that allows relatively direct

specification of the next action to perform; however, it also goes beyond this. For

example, partial orders can be specified by using binary preferences such as worse
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Figure 3.7: The plan representation in Soar: (a) a set of problems which are solvable
by the rule in Figure 3.6, (b) the sequence of steps for a four-block-stacking problem,
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and better, and also operator avoidance can be specified by using worst and reject

preferences. Second, the use of control rules provides a fine-grained conditionality

and context sensitivity that allows it to easily encode such control structures as

conditionals and loops. In addition, the variabilization of the control rules allows

a single plan fragment to be instantiated for multiple related decisions.

3.1.4 Planning Methods in Soar

Although the plan representation in Soar is different from conventional plan repre-

sentations, recent work on a Soar-based framework of planning has demonstrated

how versions of such standard planning methods as linear, nonlinear, aind abstrac-

tion planning can be derived by adding method increments that include core means-

ends knowledge about what operators to suggest for consideration, and varying

knowledge about how to respond to impasses resulting from precondition failures

[Rosenbloom et al., 19901.

Figure 3.8 illustrates initial traces of particular versions of these three forms

of planning as implemented in Soar for Sussman's anomaly (Figure 1.1) in the

blocks-world.2 They all start with a top-level operator that is to achieve the entire

conjunctive goal - (and (on B C) (on A B)) - directly from the initial state,

and reach an execution impasse if there is no information about how to do this.

In response to this impasse, a subgoal is created where means-ends analysis is

used to generate the set of candidate operators - (MOVE B C) and (MOVE A B)

- that are known to potentially be able to achieve any of the goal conjuncts. A

tie impasse then occurs unless there is information about how to pick among them

(or unless only one operator is generated). In this tie impasse, a look-ahead search

begins by selecting one of the alternatives to evaluate - here it is (MOVE A B).

Its preconditions are tested and if the operator is known to be applicable, it is

2Abstraction in the blocks world is shown for compa-ison purpose. Although abstraction has
not actually implemented within the planning framework for this research, it has been imple-
mented in Soar by Unruh [1993].
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executed to create a new state. If it is not known to be applicable - as here -

what happens next depends on the planning methods.

With abstraction, the operator is executed anyway and problem solving just

continues. In Figure 3.8(c), for example, operator (HOVE A B) is executed even

though block A is not clear. Without abstraction, as in Figure 3.8(a) and (b), a

new set of goal conjuncts is generated from the operator's unmet preconditions.

The difference between linear and nonlinear planning, at least for these versions,

is in the focus of operator generation from the new goal hierarchy. Linear planning

shifts focus completely to the new conjunct - (clear A) as in Figure 3.8(a). It

stays with the new conjunct until it is achieved, and then pops back to the original

conjunct that led to the precondition violation. Processing shifts to one of its

siblings (if there are any) only after the original conjunct is achieved.

Nonlinear planning instead shifts focus to an expanded set of conjuncts that

includes the new set plus the original set minus the conjunct that led to the precon-

dition violation, yielding (on B C) and (clear A) here (Figure 3.8(b)). At any

point in time an operator can be selected for any of these conjuncts, enabling op-

erator sequences to be interleaved as necessary (similar to the casual-commitment

approach to nonlinear planning (Veloso, 1989]). For both planning methods, once

the new focus has been determined, planning continues recursively by using means-

ends analysis to generate candidate operators from the new goal hierarchy.

So far, we have been referring to these methods as "planning methods", be-

cause they are versions of classical methods used in the creation of plans. With

this notion in hand, the question to be asked then is how they actually yields plans.

As mentioned earlier, a plan in Soar consists of a set of plan fragments - that is,

a set of either instantiated preferences or generalized control rules. Instantiated

plan fragments are generated whenever operator preferences are created in work-

ing memory. This can happen simply by the instantiation of a generalized plan

fragment (by the execution of a control rule) or as a result of projection in an

operator-selection subgoal.
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In projection, one or more operators are tried out in look-ahead search to see

which ones lead to success or failure. Success engenders best preferences and failure

engenders worst preferences. For example, in Figure 3.8(a) a best preference is

returned from the selection subgoal if the result of evaluating (HOVE A B) is success,

whereas a worst preference is returned if the result is failure. These preferences act

directly as fragments of a plan for the currently active goals. In addition, whenever

a preference is returned as a result of a subgoal, it triggers Soar's chunking process,

which creates and stores a control rule that acts as a generalized plan fragment

for classes of problems. These relationships are summarized by the following two

influence paths.

Planning method =o Projection =* Instantiated plan

Planning method =o Projection = Learning =: Generalized plan

While projection plays an integral role in determining which plans are created,

what is projected and what is considered to be success or failure are determined

by the planning method. Within this framework, planning biases are implemented

by altering the planning method, which then determines which plans are created.

through the influence paths above. For example, a protection bias is implemented

* by altering the planning method to terminate look-ahead with failure any time a

projected path leads to a protection violation. In comparison to the same planner

without this bias, the protection planner will lead to the creation of worst prefer-

ences (and negative control rules) which will avoid paths that violate protection.

3.2 Implemented Planning Biases

Within the context of Soar, an integrated planning system has been constructed

which utilizes a set of different methods. These methods vary in the amount of

bias used. The planning biases that have been concentrated on in this research are

directness, linearity and protection. Linearity and protection are chosen because

* they have been widely used in the planning literature, and directness is chosen
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Figure 3.9: Goal-flexibility dimension.

because it can generate an efficient plan very quickly for a number of problems. 0

These three biases are defined along two bias dimensions - goal flexibility and

goal protection.

The goal-flexibility dimension is shown in Figure 3.9. It determines the degree of 0

flexibility the planner has in generating new subgoals and in shifting the focus in the

goal hierarchy. This dimension subsumes the directness and linearity biases. The

most restricted point along this dimension allows no generation of new subgoals

for precondition violations (Figure 3.9(a)), yielding a single-level goal hierarchy. 0

This implements a directness bias by ensuring that each of the operators in a plan

directly achieves an initial goal conjunct, rather than an unmet precondition of

another operator.

The second point along the flexibility dimension allows generation of new sub-

goals, but only a single local set of conjuncts are attended to at any point in time

(Figure 3.9(b)). This local focus of attention has two main consequences for the

planner. First, it reduces the branching factor of the planners's search - with
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respect to the nonlinear planner - by restricting the set of operators that the

* planner can consider at any point in time to just those that are able to achieve the

local conjuncts. Second, with the assumption that an operator achieves only one

goal conjunct and that the placement of operators in the plan is restricted within

the context of the local conjuncts from which it arose, it enforces linearity on the

* resulting plans (thus implementing linear planning) by ensuring that ol ators for

different goal conjuncts cannot be interleaved in the output plans.

The third point along the flexibility dimension allows the global use of subgoals;

* that is, new goal conjuncts are generated for unmet preconditions, and operators

are simultaneously considered for all unsatisfied conjuncts (Figure 3.9(c)). This is

the least restricted version, and implements nonlinear planning by allowing opera-

tors for different goal conjuncts to be interleaved, as in NOLIMIT [Veloso, 19891.

The goal-protection (GP) dimension is shown in Figure 3.10. The two points

implemented along this dimension correspond to goal protection (Figure 3.10(a))

- that is, every achieved top-level goal conjunct is protected between the time

* it is achieved and the time it is no longer needed - and to no goal protection
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(Figure 3.10(b)). The main consequence of using goal-protection is that it shrinks

the search space by cutting off sequences of operators which violate goal protection.

Figure 3.11 characterizes the 3x2 set of planning methods derived from these

bias dimensions. Each of the cells in Figure 3.11 shows a label representing the

planner for that cell along with a problem that is just hard enough to require that

planner; that is the problem can be solved optimally by the planner represented

by that cell, but not by either the planner to its left or the planner above it. The

bottom-left cell represents an extended blocks-world problem where a block that is

second from the top of a tower can be moved [Etzioni, 1990a]. The most restricted

planner (MI) - a direct goal-protection planner - is in the top-left cell of the

figure. While quite restrictive, it is sufficient to solve the block-stacking problem

shown in that cell of the figure. The least restricted planner (M6 ) - a nonlinear

planner without goal protection - is in the bottom-right cell of the figure. It is the

only planner in the figure capable of generating an optimal solution to the blocks-

world problem shown in that cell. Between these two extremes, moving up or to

the left yields more bias, while moving down or to the right yields less bias. In each

of these intermediate cells, the problem shown is one that is just hard enough to

require that planner; that is, the problem can be solved optimally by the planner

represented by that cell, but not by either the planner to its left or the planner

above it.

Note that in the blocks-world domain, both M5 and Ms are complete planners

in that they can potentially solve every problem, though Ms may not be able

to generate an optimal solution for some problems, However, in domains with

irreversible operators as shown in Figure 1.2, Ms is the only complete planner.

Figure 3.12 compares the traces of these methods for Sussman's anomaly. They

all start with a combination of the initial state, the entire conjunctive goal - (and

(on B C) (on A B)) - and the initial set of candidate operators - (MOVE B

C) and (MOVE A B) - which are generated by means-ends analysis. If there is

no information about which operator to select, a tie impasse occurs. 3 In this tie

SFor simplicity of presentation, these traces only show tie impasses.
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Figure 3.12: Planning in Soar.
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impasse, a look-ahead search begins by selecting one of the alternatives to evaluate

* -here it is (MOVE A B).

If the directness bias is used - as in Figure 3.12(b) - the evaluation of (MOVE

A B) is terminated immediatedly with failure as the evaluation value, and the other

operator (MOVE B C) is selected. If the directness bias is not used, a new set of goal

conjuncts are generated from the operator's unmet preconditions (Figure 3.12(c-

e)).

Linear planning focuses on the new conjunct - (clear A) as in Figure 3.12(c)

* and (e) - until it is achieved, and then returns to the original conjunct that

led to the impasse - here, (on A B). Sibling conjuncts - here, (on B C) -

are considered only after the original conjunct is achieved. In this problem, this

eventually leads to failure if a protection bias is used (Figure 3.12(c)), or generates
a non-optimal plan if a protection bias is not used (Figure 3.12(e)). Nonlinear

planning instead shifts focus to the entire set of goal conjuncts (except the one

that led to the impasse) - (and (on B C) (clear A) as in (Figure 3.12(d)).

* This eventually can yield an optimal plan for this problem regardless of the use of

a protection bias.

* 3.3 Learning in Single-Method Planners

For each of the single-method planners, chunking is performed over the planner's

projection (look-ahead) process: the elements to be explained are the preferences

• generated during projection, and the explanations are the traces of the projections

that led to the preferences. Both positive rules and negative rules can be learned

from projections. Figures 3.13 and 3.15 provide a simple example of this.

Figure 3.13 shows a path projected by the nonlinear planner for a simple four-

block-unstacking problem. This projection proceeds through multiple tie impasses

until the problem is successfully solved. In this example, (MOVE A Table) is eval-

uated in the first operator-selection subgoal, and (MOVE B Table) is evaluated in

* the second operator-selection subgoal. As shown in Figure 3.14, this results in a
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J~~A

C A

AAchieed

Figure 3.13: Four block unstacking with nonlinear planning.

pair of positive control rules, one for each correct decision on the solution path.

Evaluating an operator which is not directly applicable in the current state - here

(MOVE B Table) or (MOVE C Table) in the first operator-selection subgoa - also

leads to success in nonlinear planning, though the learned rules are more complex.

Figure 3.15 shows a path projected with a directness bias for the same block-

unstacicing problem. In contrast to the previous case, the projection is terminated

with failure as soon as the non-applicable operator (MOVE B Table) is selected. As

shown in Figure 3.16, this yields a negative control rule for the incorrect decision

on the solution path.
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Chunk-2: If the problem-space is blocks-world
A There exists an active goal (on <y> Table)
A There exists an active goal (on <z> Table)
A (on <y> Table) and (on <z> Table) are not achieved
A <y> is on <z>
A <y> is clear
A The proposed operator is (MOVE <y> Table)

The operator is best

(a)
0

Chunk-4: If the problem-space is blocks-world
A There exists an active goal (on <x> Table)
A There exists an active goal (on <y> Table)
A There exists an active goal (on <z> Table)

* A (on <x> Table), (on <y> Table), and (on <z> Table) are not achieved
A <x> is on <y>
A <y> is on <z>
A <x> is clear
A The proposed operator is (MOVE <x> Table)

* The operator is best

(b)

* Figure 3.14: Learned rules for block unstacking with nonlinear planning.

Note that if the planner's bias is reflected in an altered planning method, which

* in turn yields an altered projector, then the planner's bias can indirectly induce

a bias in the resulting learning process. For example, the rules in Figure 3.14 are

relatively specialized, because each must encapsulate the entire explanation for

why a particular operator will eventually lead to success. In larger problems these

explanations get even larger, and the rules end up being even more specialized.

On the other hand, the explanation for the rule in Figure 3.16 is quite short -

based as it is on the explicit assumption that directness can hold and on the failure

*• of the first selected operator to be applicable. As it turns out, this single rule is
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717

Chunk6Cl

Figure 3.15: Four block unstacking with directness.

IA A

Chunk-6: If the problem-space is blocks-world

A Directness is assumed to hold
A There exists an active goal (on <y> Table)
A (on <y> Table) is not achieved
A <y> is not clear
A The proposed operator is (MOVE <y> Table)

The operator is worst

Figure 3.16: A learned rule for block unstacking with directness.
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general enough to handle the entire problem, by removing from consideration all

operators that attempt to move unclear blocks onto the table. The bias in this case

has thus yielded faster planning and learning - because of shorter projections and

explanations - and has resulted in the acquisition of fewer, more general rules.

Implicit in this example is one approach to producing generalization to N [Bost-

r6m, H., 1990, Cohen, 1988, Shavlik, 1989, Subramanian and Feldman, 1990], where

a plan learned for a problem of a particular size can transfer to solve problems

with the same structure but of arbitrary size [Rosenbloom et al., 1993]. Without

* directness, the control rules are specific to particular numbers of blocks, and thus

can only be used to directly solve terminal subregions of larger problems. However,

with directness, a single rule is learned that removes from consideration at each

decision all operators that move unclear blocks to the table, no matter how many

unclear blocks there are. This idea can be applied to other problems and biases

as well. Figure 3.17, for example, shows a path projected with protection for a

four-block-stacking problem. As with the directness bias in block unstacking, a

-•protection bias leads here to learning a single negative rule (Figure 3.18) that can

be applied to stacking problems of arbitrary size.

A third type of bias that can also induce generalization to N is complete pro-

tection. Complete protection is a variant on goal protection that provides a very

strong bias by not only protecting established goals, but also protecting established

operator sequences. That is, it disallows any backtracking on operator selection,

thus letting projection be terminated with success whenever an operator is se-

* lected, rather than waiting until the entire problem has been solved. As with the

directness example, projection is terminated here after the first operator is selected

(Figure 3.19(a)). However, in this case it is terminated with success as soon as the

top block is moved to the table. The explanation for this success depends only on

the explicit assumption of complete protection and on the fact that the operator

was successfully applied, so a relatively general, positive control rule is learned

(Figure 3.20). Although this is a positive rule, it also turns out to produce gener-

• alization to N, but now by always specifying that the one clear block that is not
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ng Chunk-e

U& Goal

Failure

Figure 3.17: Four block stacking with protection

Chunk-8: If the problem-space is block*-world
A Goal protection is assumed to hold
A There exists an active goal (on <x> <y>)
A There exists an active goal (on <y> <z>)
A (on <x> <y>) and (on <y> <zz>) are not achieved
A <x> and <y> are blocks
A <x> and <y> are clear
A The proposed operator is (MOVE <x> <y>)

40

The operator is Worst

Figure 3.18: A learned rule for four block stacking with protection.
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Figure 3.19: Three and five block unstacking with complete protection: (a) a
projected path, (b) transfer of the learned rule to a different number.



Chunk-10: If the problem-space is blocks-world
A Complete protection holds
A There exists an active goal (on <x> Table)
A (on <x> Table) is not achieved
A <x> is clear
A The proposed operator is (MOVE <x> Table)

The oper -or is best

Figure 3.20: A learned rule for four block unstacking with complete protection.

already on the table - if it were already on the table, there would be no active goal

conjunct for it - should be moved to the table. The resulting rule can transfer to

any number of iterations, as shown in Figure 3.19(b).

The key to producing generalization to N with these biases is that they enable

learning from non-iterative paths - in this way it is similar to Etzioni's [1990a]

work on restricting EBL to learn from only non-recursive paths. In the directness

and protection cases, the success paths are iterative, but (negative) rules can in-

stead be learned from non-iterative failure paths. In the complete-protection case,

learning occurs from a fragment of the success path that corresponds to just a sin-

gle cycle of iteration. In both cases, the resulting rules can transfer to any number

of iterations.

3.4 Experimental Results 0

Experimental results from the six planners in two planning domains - the blocks-

world domain and the machine-shop scheduling domain - are shown in Tables 3.1 - •

3.3. The data comes from running each planner on the same set of 100 problems for

each domain. For each problem in the blocks-world domain, the number of blocks

was randomly selected between three and four. Given the number of blocks, an

initial state was randomly generated among the possible configurations of the blocks 9
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and the table (3 configurations for 3 blocks, and 5 configurations for 4 blocks).

The generated initial state was represented as a set of (on zi yi)-type predicates.

Likewise a set of (on zj yj)-type goal conjuncts was randomly generated that

numbered between two and the number of blocks in the initial state. For each goal

conjunct, zi was selected randomly from the initial set of blocks, and then yj was

selected randomly from among the t, e blocks which have not yet been

selected as yt (k < j). The number of possible combinations of goal conjuncts for

n-block problems is 0(n"), because for each of the n blocks, there are n possible

* locations.

A task in the machine-shop scheduling domain is to determine a sequence of

machining operations to produce the desired objects so as to meet the given re-

* quirements [Minton, 1988]. 4 The shop contains several machines, including ROLL,

LATHE, PUNCH, DRILL-PRESS, POLISH, GRINDER, SPRAY-PAINT, and IMKERSION-

-PAINT. Each object has five attributes - shape, has-hole, surface-condition,

painted, and temperature. Each attribute can have one of two to four types of

* values. For each problem, the initial state was generated by assigning a randomly

generated type to each attribute for an object (except that the initial tempera-

ture is always cold). The number of goal conjuncts for each problem was fixed as

five. The goal conjuncts for each problem were generated randomly as with the

initial-state generation.

Learning was turned on for each problem, but only within-trial transfer was

allowed; that is, rules learned during one problem were not used for other problems.

• Planning time is mainly measured in terms of decisions, the basic behavioral cycle

in Soar. This measure is not quite identical to the more traditional measure of

number of planning operators executed, but should still correlate with it relatively

closely.

"The version of the machine-shop domain used in this research is almost identical to the original
PRODIGY version presented in [Minton, 1988]. The only difference between the two versions is
that the time augmentation for each generated operation in the original version is not specified
in our version, because our main focus here is on the sequence of operations rather than the time

* when to execute the operations.
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No subgoal Local Global
(Directness) (Linear) (Nonlinear)

M, M2  M3

GP 68 (A,) 95 (A2) 96 (A3)

M4  Ms M

No GP 68 (A4) 100 (As) 100 (As)

(a) Blocks world domain.

No subgoal Local Global
(Directness) (Linear) (Nonlinear)

M, M2  M3

GP 70 (A1 ) 70 (A2) 70 (A3 )

M4 Ms M6

No GP 100 (A4 ) 100 (As) 100 (As)

(b) Machine-shop scheduling domain.

Table 3.1: Number of problems solved.
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No subgoal Local Global
(Directness) (Linear) (Nonlinear)

M, M2 M 3
GP AI(A 4) 8.63 (0.17) 15.06 (0.41) 16.24 (0.43)

A2  22.67 (0.92) 23.66 (0.73)
A3  23.60 (0.73)As(A)

M M5  M6
No GP AI(A 4) 12.34 (0.29) 22.21 (0.67) 33.40 (2.19)

A2  29.41 (1.06) 47.12 (3.66)
A3  29.48 (1.06) 48.06 (3.68)
As(As) 29.22 (1.04) 47.93 (3.62)

(a) Blocks world domain.

No subgoal Local Global
(Directness) (Linear) (Nonlinear)

M, M2  M3
GP AI(A 2 , A3 ) 20.73 (0.49) 20.73 (0.49) 20.73 (0.49)

A(AS, A6)
M4 M5 M6

No GP A,(A 2, A3 ) 31.47 (0.85) 31.47 (0.85) 31.47 (0.85)
A 4(As, A.) 33.97 (0.92) 33.97 (0.92) 33.97 (0.92)

* (b) Machine-shop scheduling domain.

Table 3.2: Average number of decisions (and CPU time (sec.)) per problem.

0
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No subgoal Local Global
(Directness) (Linear) (Nonlinear)

M, M2  M3

GP AI(A 4 ) 1.82 1.85 2.00
A2  - 2.35 2.54
A 3  - 2.54
A5(A)

M 4  M 5  M6

No GP A1(A4) 1.82 3.00 2.90
A2  - 3.78 3.88
A 3  - 3.83 4 07
As(As) - 3.82 4.14

(a) Blocks world domain.

No subgoal Local Global
(Directness) (Linear) (Nonlinear)

MA M2  M3
GP A,(A 2, A3) 2.43 2.43 2.43

A4(As, As) - - -

M4  M5  M6
No GP A,(A 2 , A3 ) 4.13 4.13 4.13

A(Af, As) 4.47 4.47 4.47

(b) Machine-shop scheduling domain.

Table 3.3: Average plan length per problem.

56

, , I



Table 3.1 shows the number of problems solved by each cell's planner, as defined

in Figure 3.11, for these two domains. The label A. denotes the problem set that

the method M implicitly defines. With a sufficient time limit, every problem

solvable in principle by a planner was actually solved. Not surprisingly, the data

show a monotonic relationship between planner bias and scope, from a low of

68 problems in the blocks-world domain and 70 problems in the machine-shop

scheduling domain for the most restricted planner to a high of 100 problems in

both domains for the least restricted planner.

Tables 3.2 and 3.3 show the average number of decisions, average CPU time,

and average plan lengths - which should positively correlate with execution time

- for each distinct problem sets defined in Table 3.1. In the standard blocks-world

* domain, four distinct problem sets are defined. This is because A4 is the same as

A, since if a problem is not solvable with protection, it also is not solvable with

directness; and As is the same as As since both Ms and M6 are complete in this

domain, though M5 may not be able to generate an optimal solution. These four

problem sets are associated with the four rows within each cell. In the machine-

shop scheduling domain, no precondition subgoals are required because there is

no operator which achieves any of the unmet preconditions. Thus both directness

and linearity are irrelevant. However, there are strong interactions among the

operators, so protection violations are still relevant. In consequence, two distinct

problems sets are defined A, and A4 .

The timing results are shown in Table 3.2. The two columns within each cell

show the average number of decisions and the average CPU time, respectively,

which are required to generate plans for the problems. The table shows that plan-

ning effort is also a monotonically decreasing function of the amount of bias along

these dimensions (only for protection in the machine-shop scheduling domain). For

example, for problem set A, in the blocks-world domain, effort ranged from a low

tf 8.63 decisions for the most biased method (that is, the direct goal-protection

* method) to a high of 33.40 decisions for the least biased method (that is nonlinear
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pl&aning without goal-protection). This trade off between efficiency and complete-

new implies that selecting an appropriate amount of bias for a given problem is

critical for finding a solution quickly. Table 3.3 exhibits a similar monotonic rela-

tionship between plan length and the amount of bias used.

3.5 Summary

Six single methods are defined along two bias dimensions: goal-flexibility, and goal-

protection. These methods are implemented in Soar, in which generated plans are

represented as sets of control rules that jointly specify which operators should

be executed at each point in time. The six implemented methods are compared

empirically in terms of planner completeness, planning time, and plan length. The

experimental results show a trade-off between completeness and efficiency. This

implies that the planning system would be best served if it could always opt for

the most restricted method adequate for its current situation.
5
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Chapter 4

Multi-Method Planners

One of the main problems with the planners examined in the previous chapter is

that each is either incomplete or performs a significant amount of excess work for

some of the problems (both in planning and execution). An alternative approach

is to build a multi-method planner which utilizes a coordinated set of planning

methods, where each individual method has different scope and performance. The

* basic idea underlying this thesis is to select and coordinate a set of individual

methods based on the empirical performance of those methods for a training set

of problems.

Within the empirical multi-method planning framework, the main goal of this

research is to create a set of multi-method planners which are more efficient and ap-

plicable than single-method planners. The previous chapter introduced a method-

ology to create individual methods which have different performance and scope

* based on the amount of bias used. Given a set of created methods, the key issue

is then how to coordinate the methods in an efficient manner so that the multi-

method planner can have high performance. Method coordination refers to (1)

the selection of appropriate methods as situations arise, and (2) the granularity of

method switching as the situational demands shift.

For method selection, individual methods need to be organized so that a higher

level control structure can determine which method to use first, and which method

* to use next when the current method fails. Two straightforward ways of organizing
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individual methods are a sequential and a time-shared manner. A sequential multi-

method planner consists of a sequence of single-method planners. A time-shared

multi-method planner consists of a set of single-method planners in which each

method is active in turn for a given time slice [Barley, 1991]. In this thesis, a

special type of sequential multi-method planning, called monotonic multi-method

planning is focused on. In a monotonic multi-method planner, the single methods

are sequenced according to increasing coverage and decreasing efficiency. With the

assumptions that earlier methods terminate, and that methods which are efficient

when they succeed do not waste too much time when they fail, monotonic multi-

method planners can generate plans efficiently by using more restricted methods

earlier in the sequence [Lee and Rosenbloom, 1992].

One way to construct a monotonic multi-method planner is to use the biases

which themselves increase efficiency. Individual methods are sequenced so that

the set of biases used in a method is a subset of the biases used in earlier meth-

ods, and the later methods have more coverage than the earlier methods. This

means that planning starts by trying highly efficient methods, and then succes-

sively relaxing biases until a sufficient method is found. This type of planning

is called bias-relaxation multi-method planning. A bias-relaxation multi-method

planner is not necessarily a monotonic multi-method planner if there are interac-

tions among biases. However, one can generate monotonic multi-method planners

via bias-relaxation by just testing whether monotonicity holds for the created bias-

relaxation multi-method planners. In bias-relaxation multi-method planning, each

bias is evaluated independently by comparing a method which uses that bias only

and a method which uses no bias. Thus, bias-relaxation multi-method planning has

more restricted scope in creating and comparing individual methods than mono-

tonic multi-method planning1 .

1Strongly-monotonic multi-method planning described in [Lee and Rosenbloom, 1993] also
uses a bias-relaxation scheme. However, it evaluates each bias along with other biases, thus
examining more methods than bias-relaxation multi-method planning.
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The second issue of method coordination is the granularity at which individual

methods are switched. This issue is important in terms of a planner's perfor-

mance, because the performance of a multi-method planner can be changed ac-

cording to the granularity of shifting control from method to method. Depending

* on the granularity of method switching, multi-method planners can be further spe-

cialized: coarse-grained multi-method planners, where methods are switched on a

problem-by-problem basis; and fine-grained multi-method planners, where methods

are switched on a goal-by-goal basis [Lee and Rosenbloom, 1993].

* This chapter investigates these two issues of coordinating individual methods

in multi-method planning in depth. To investigate the method organization is-

sue, a scheme to construct monotonic multi-method planners from a set of single-

method planners is provided, and then a formal model is presented to compare the

performance of constructed monotonic multi-method planners with time-shared

multi-method planners and single-method planners. Also, a scheme to construct

a set of bias-relaxation multi-method planners is provided, and the constructed

* bias-relaxation multi-method planners are compared experimentally with single-

method planners. To investigate the granularity of method switching, the per-

formance of coarse-grained bias-relaxation multi-method planners and fine-grained

bias-relaxation multi-method planners (called simply coarse-grained multi-method

planners and fine-grained multi-method planners, respectively, throughout this the-

sis) are evaluated experimentally, and compared with the performance of single-

method planners.

* Partial-order planning is one of the most popular approaches in the planning

literature. At the end of this chapter, multi-method planning is compared with

partial-order planning in terms of planning performance.

4.1 Monotonic Multi-Method Planners

In a monotonic multi-method planner, individual methods are sequenced so that

* the earlier methods are more efficient and have less coverage than the later methods.
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The idea is that if the biases used in efficient methods can prune the search space,

the problems solvable by efficient methods should be solved more quickly, while

problems requiring less bias should not waste too much extra time trying out the

insufficient early methods.

This approach is inspired by iterative deepening [Korf, 1985]. In iterative deep-

ening, a sequence of depth-first searches are performed, each to a greater depth

than the previous one. If a solution is found at a shallow depth, the cost of search-

ing to a greater depth is saved. If a solution is not found at a particular depth, a

deeper search is performed. The cost of doing the shallower searches is then wasted,

but since the deeper search costs at least P times the cost of the shallower search

- where 8 is the branching factor of the search tree - this cost can be relatively

quite small. Thus, if the proportion of problems solvable at shallow depths is large

enough, and the ratio of costs for successive levels is large enough, there should be

a net gain.

A monotonic multi-method planner can be defined formally by using a restricted

dominance relation [Lee and Rosenbloom, 1992].

4.1.1 Restricted Dominance Relation

Let Mi be a single-method planner. Let A be a sample set of problems, and let

A, C A be the subset of A which is solvable in principle by Mi. The functions

s(Mi, As) and l(M, As) represent respectively the average cost that Mi requires

to succeed and the average length of plans generated by Mi, for the problems in

As g A,. Similarly, f(Mi, AF) represents the average wasted cost for Mi to fail for

the problems in AF g A - A,.

Given a set of methods {Mi} (i=l, ... , n), a restricted dominance relation M -<

M. is defined between two different single-method planners, M. and M., if the

following conditions hold:

(1) A.,c Av

(2) s(M.,A) < s(Mv,A,), for every Ai g A. ,
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f[ Decisions J Plan length
Planner I A 2 L a. I As . A, I A2 .I as

M1 (directness, protection) 12.50 - - !.56 - -

ra2 (lnearity, protection) 13.00 18.90 - 1.56 2.32 -
M3 (protection) 13.21 26.91 - 1.62 2.49 -
M4 (directness) 13.54 - - 1.56 - -

M5 (linearity) 14.81 24.47 24.84 2.10 3.22 3.34
At. Jj 16.23 40.85 40.96 2.02 ,3.17 3.37

(a) Blocks world domain.

* Decisions PIa lengthPlanner A, IA 4  A, I A I
M (directness, protection) 22.14 2.68 -
MA2 (linearity, protection) 22.14 - 2.68 -
M3 (protection) 22.14 - 2.68 -
M4 (directness) 35.33 37.42 4.36 4.68
Ms (linearity) 34.27 36.10 4.45 4.82
-t 6  34.27 36.10 4.45 4.82

(b) Machine-shop scheduling domain.

Table 4.1: The performance of the six single-method planners for the problem sets
defined by the scopes of the planners.

(3) i(M, A,) !5 I(Mv,A,), for every Ai g A,.

A sequential multi-method planner which consists of n different single-method

• planners is denoted as Mk,-+M -....-- +M". A sequential multi-method planner

Mk -M 2 -...--. Mk. is called monotonic if Mk, -< Mk,.+ holds for each i = 1,..., n-

1.

The straightforward way to build monotonic multi-method planners is to run

* each of the individual methods on a set of training problems, and then from the

resulting data to generate method sequences for which monotonicity holds. Ta-

ble 4.1 shows the average number of decisions, s(Mk,, Ak,), and the average plan

lengths, l(Mk,, Ak,), over a training problem set for the six single-method planners
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(a) Blocks-wodd doman

(b) Machine-sbop xchedulng domain

Figure 4.1: Restricted dominance graphs for the single-method planners.

defined in Chapter 3, for the blocks-world domain and the machine-shop scheduling

domain.

For each domain, the problem set consists of 30 problems which are randomly

generated as in Chapter 3. In the blocks-world domain, A 2 and A3 are different sets

in principle, because problems such as Sussman's anomaly cannot be solved by a

linear planner with protection (M2 ) but can be by a nonlinear planner with protec-

tion (M3). However, among the 30 training problems, these "anomaly" problems

did not occur, yielding A2 = A3 for this set of problems.
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Figure 4.1 exhibits restricted dominance graphs based on the results in Ta-

Sble 4.1. Each node in a graph represents a single-method planner, and an arc

from M. to M. implies that M. -< M. holds. Thus every path in the graph

corresponds to a monotonic multi-method planner. A monotonic multi-method

planner Mk, ---Mk, --...--#Mt, is complete, if Mk. is complete. In the blocks-world

domain, seven complete 2-method planners and four complete 3-method planners

can be constructed, whereas in the machine-shop scheduling domain, nine complete

2-method planners can be constructed.

* The next "tion compares a monotonic multi-method planner with its corre-

sponding tir.ie-shared multi-method planner and single-method planner in terms

of planning time and plan length.

0 4.1.2 Performance Analysis

Planning time: In this section, it is assumed that the individual methods in

a sequential multi-method planner are switched on a problem-by-problem basis.

* For a given problem a E A, the planning time of a sequential multi-method plan-

ner Mk,--Mk-,-1 ..... -eMk., where Mk, is the first method which solves a, can be

represented as

s(M-.M 2 --....--eM, {a})= s(Mk,, {a})+ f(Mk,, {a}), (4.1)

where s(Mk,, {a}) is the cost for Mk, to solve a, and E -j/(M,, {a}) is the sum

of the costs for inappropriate earlier methods to fail for a.

The corresponding time-shared multi-method planner consists of the same set

of single methods, denoted as Mk, IIM, 1... JjMk,. Let Mk, be the first method that

solves a in a horse-race manner. Suppose that the switching in a time-shared multi-

method planner is based on a unit time slice. Then, the expected planning time of

M11 IIMk2 11... IIMk, for a problem a E A can be represented as

s(M lMk,12 ... MlMk, {a}) = s(Mk,, {a}) + min[f(Mk,,, {a}),s(Mk,., {a})],
i=1.i#i

(4.2)
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where the first term is the cost for the method that actually solves a, and the

second term is the sum of the costs for the rest of the methods either to fail for a

(f(Mki, {a))) or to try to solve a (,(Mk, (a))).

The average planning time for a problem set A can be represented by using

a probability function. Let P. (= IAk,1/IA) be the probability that an arbitrary

problem in A is solvable by Mk,. Let Mk be a null planner which cannot solve any
problem; that is A. = and Pk = 0. Let A' = Ak, -Ak~., for 1<i<n, be the set

of problems which are solvable by Mk, but not by Mk,_., and let P = IAkI/IAI,

for 1<:i<n. Let s(M.,As) = l(Mk.,,As) = 0, for any As, and f(Mk.,AF) = 0, for

any AF.

For a problem set A, the planning time of a complete sequential muli-method

planner Mk, -. Mk-- ...-- +Mk. can be rewritten as the sum of the average planning

time for the disjoint problem sets A, (1I <in):
ft

S(MkI--+ Mk,-4..... Mk., A)= *( •(Mk, -* Uk--...--+M" k,)'
i=I

where

i-1

s(Mk,,A'i,) + f(Mk,,A',). (4.3)
j=1 a

The planning time of the corresponding time-shared multi-method planner can

be rewritten as

s(M, IIMk. II...IIMk., A) = -'(Pk, * s(Mk, 1IMk I...IM., A',)),

where

s(Mk.l Mk2 11 ... JIMk., A'k,)
s(Ml,,,A , + .] EA', min[f(M,, {a}),,9(Mkj,, a})] (44

s(Mk, Al.) + E ks, (4.4)jffi40i Ak, I

The relative performance between a complete sequential multi-method planner

and the corresponding time-shared multi-method planner depends on the ordering

of the methods and the cost of f(Mk,, {a)) and s(Mk,, {a}). If MkM -.-- M -a •
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is monotonic, later methods (Mi,j=i+1, ... , n) would not fail to solve a, from the

definition. Thus,

s(MkjIMhj ...flMkA'.) 

, , EA- I min[f(M,, {a}), s(M,, {a})]
(in - i + 1) * a(Mk,,A'-) + E. (4.5)

In particular, if f(Mk,, {a}) < e(Mk,, {a}) (1<j_<i-1) for each a, we have

(Mk, IIMk II...IIM., A',) =

((n - i + 1) * s(Mk,,A',) + f(Mk,,A,). (4.6)
j=1

Thus, the performance difference between a monotonic multi-method planner and

the corresponding time-shared multi-method planner is

s(Mk, 1IIMk2 II...IIMk., A) - s(Mk1 --,Mk.--,...--, Mk.,A) =

Pk, * (n - i) * s(Mk,,Ak,)] > 0. (4.7)
i--1

This implies that if the cost of failure for a restricted planner is always less
than the cost of success for a more relaxed planner, then monotonic multi-method

planners outperform corresponding time-shared multi-method planners; otherwise,

time-shared multi-method planners may perform better. This all depends on the

relative search space size for the restricted planner and the density and distribution

of solutions in the search space. However, if the biases used in a restricted method

are strong enough to cut off all the failure paths at shallow depths, the cost to

determine whether a method fails may be less than the cost to determine whether

a method succeeds. Moreover, if the rule learned from a failure path can transfer

to other failure paths, the cost of failure can be even less.

The performance of monotonic multi-method planners and single-method plan-

ners is compared as follows. For each monotonic multi-method planner M --M --+

...- +M., there is a corresponding single-method planner Mk' which has the same

coverage of solvable problems. If Ml---+Mk 2--+...---Mk. is complete, Mk. is also
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complete. We compare a complete monotonic multi-method planner with its cor-

responding single-method planner in terms of planning time.

The performance of Mk. is

s(Mk., A) = ,[P, * s(M., A',). (4.8)

To compare the performance of M 1 ---M&--+...--+Mk. with Mk, it is necessary

to subtract (4.3) from (4.8), yielding

s(Mk., A) - s(Mk ---Mk-,...-M ,A) =

ni-

*(s(M&,,,) - s(M,.,A') - _f(Mk, A,))]. (4.9)
i=l j=l

This means that if the performance gain by using a cheaper method (s(Ml., A', ) -

a(Mki, W,)) is greater than the wasted time from using inappropriate methods

(I-V f(M,,, A',)) in a monotonic multi-method planner, then it is preferable to

use that method over the single-method planner; otherwise, the single-method

planner is preferred (at least where planning time is concerned).

Plan length: The plan length I for a complete monotonic multi-method plan-

ner and for the corresponding time-shared multi-method planner is the same and

equal to

l(Mk, -'Mh -A...-M 5 ,A) = I(M , 11 M,...IIMk ,,A) =

n

,[Pk,, * (Mk,,A',)], (4.10)
i=j

while the plan length for the corresponding single-method planner Mk. is

ft

I(Mk., A) = [, (Mk., A'A). (4.11)

Since Mk, -Mk,-*...--#Mk. is monotonic, then l(Mk,,A',) 5 l(M., Ak,). There-

fore, the lengths of plans generated from a monotonic multi-method planner and

the corresponding time-shared multi-method planner are always less than or equal

to the length of plans generated from the corresponding single-method planner.
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4.1.3 Learning in Multi-Method Planning

The analytical results in the previous section show that monotonicity can yield

performance gain in sequential multi-method planning by using cheaper methods

earlier in the sequence. The performance of sequential multi-method planning can

be further improved by ameliorating the effects of wasting effort on insufficient

planners via learning - in particular, of two sorts. The first sort of learning is

within-planner learning that can transfer across planners (possibly for the same

problem). If a projection is performed within one planner, and the results of the

projection depend only on aspects of the planner that are shared by a second

planner, then it should not be necessary to repeat that projection when the second

planner is tried. For example, a rule learned from a plan violating goal protection in

* the direct goal-protection planner should be able to transfer to the nonlinear goal-

protection planner, where it prevents the planner from reprojecting along paths

that violate goal protection.

The second sort of learning is about which methods to use for which classes of

problems. To the extent that this can be done, the effort wasted in trying inad-

equate methods can be avoided in the future. In our Soar-based implementation,

bias selection is structured just as would be any other selection, so this sort of

* learning can happen automatically by chunking. From an experiment with such

learning, Figure 4.2 shows a rule learned to avoid using the most restricted method

- that is, direct goal-protection - under specific circumstances where there is

only one active goal conjunct but (at least) two blocks must be moved to achieve
• it. This rule was learned during the first problem and can be used in three later

problems to avoid even trying this method.

Though we have examined instances of learning about which methods to use for

9 which classes of problems in the context of multi-method planning, no systematic

study has yet been made of their effectiveness or of whether issues of overgener-

alization and/or undergeneralization will prove troublesome, which they are likely

to be. Another reason why this form of learning is not used is that the current

• multi-attribute encoding creates some expensive chunks for some of the problems.
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Proble sce Isec-ed
One onjunct Is unsohivsd
Want a stack of at lest two blobks
The Lppe block Is not In poekion
The upper block Is not ce
An operator Is proposed to use Wle ness & protection" nehod

The operator Is wor

(a)

Umbievd conjunct (O. B A) (On A B) (On e E) (On D B)

(b)

Figure 4.2: Example of learning which planners to use for which classes of problems:
(a) a learned rule to avoid the direct goal-protection planner, (b) a class of problems
in which this rule is applicable.

Future work should include rerunning the experiments summarized in Table 4.1

with this form of learning enabled.

4.2 Bias-Relaxation Multi-Method Planners

Section 4.1.1 showed an approach to creating monotonic multi-method planners

by using a restricted dominance graph. This approach is quite straightforward in

the sense that each pair of methods is directly compared. However, given a set of

methods, it does not specify which methods should be created and which pairs of

methods should be compared. Let k be the number of biases. Then, the number

of single methods generated by every combination of these biases is 0( 2 k). The

number of comparisons for creating a restricted dominance graph for these methods

is 0(2k). Although it is tractable to generate all monotonic multi-method planners

by using a restricted dominance graph with a small set of initial biases - as in the
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case of Section 4.1.1 - it may not be tractable if the number of biases considered

is increased. Therefore, a scheme is needed to restrict the scope of methods to be

generated and compared.

One way to remedy this problem is to compare the effectiveness of each bias in

isolation, instead of comparing the performance of methods which are generated

with respect to combinations of these biases. The approach presented in this section

is based on bias-relaxation [Lee and Rosenbloom, 19931. Bias-relaxation multi-

method planners can be created as combinations of effective biases only, so that

later methods can embody subsets of the effective biases incorporated into earlier

methods2 . Method switching is implemented by relaxing some of these biases; that

is, planning starts with a set of effective biases, and then successively relaxes one

or more biases until a solution is found within the method. This can be formalized

as follows.

Let Bk, be the set of biases used in MI,. A bias b is called effective in a problem

set A and a method set {Mk, }, if for a pair of methods Mk. and M,, in {Mk, } such

that Bk.= {b} and Bkw = 0,

(1) s(Mk.,Ak.) 5_ (Mk.,Ak.), and
(2) l(Mk., Ak) :_ l(Mk,, Ak.).

A sequential multi-method planner Mk, --+Mk2--...--4Mk. is called a bias-relaxa-

tion multi-method planner, if

* (1) Bk.,_ D B,, for 2<i:_n, and

(2) B,,_. - Bk, consists of effective biases only, for 2<i<n.

Given a set of k biases, the time complexity of testing whether these biases

are effective or not is 0(k) (by factoring out the complexity of solving problems),

which is exponentially smaller than 0(2k2).

2Positive bias, as defined in [Lee and Rosenbloom, 1993], is a different notion from effective
* bias here in that the effectiveness of a positive bias is evaluated along with other biases.
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The results in Table 4.1 imply that directness and protection are effective in

the blocks-world domain, while linearity is not, since i(Ms, A,) > l(M6, A,) and

l(Ms, A2) > I(Ms, A2 ). If one uses linearity as an independent bias - so that one

set of multi-method planners is generated using it and one set without it - and

vary directness and protection within the individual multi-method planners, we

get a set of ten different bias-relaxation multi-method planners (four three-method

planners and six two-method planners) as shown in Table 4.2. In the machine-

shop scheduling domain, only protection is effective. In consequence, only one

bias-relaxation multi-method planner is generated M.-+M4.

Type J Multi-method planners Type Multi-method planners
M1 -M 2--,M5  M-.M3- M6

M1l-.M4 --,Mg M -+M4-+M
Linear M1 -AIMs Nonlinear M1--+ A

M2--+M5  M3 -. Ms
M4-_M M4--*M6

Table 4.2: Ten bias-relaxation multi-method planners in the blocks-world.

Note that if there are no interactions among effective biases, a bias-relaxation

multi-method planner is a special case of a monotonic multi-method planner. How-

ever, this is not necessarily true if there are interactions among them. For example,

although directness is effective, this does not necessarily mean that the method

that uses directness aad protection is more efficient than the method that uses

protection only.

In order to generate monotonic multi-method planners via bias-relaxation, one

can just test whether monotonicity holds for the created bias-relaxation multi-

method planners. The time complexity for this procedure is linear in terms of

the number of biases, because at least one bias is relaxed whenever a method is

switched.

In the next section, the experimental results for all of the created bias-relaxation

multi-method planners are presented.
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lanne HAI A_ A3 A 1 A, I A2 eA3 A-, I
M622.21 129.41 1 29.48 29.22 3.00 1 3.78 3.83 3.82

M6 33.40 [47.12 48.06 47.93 2.90 3.88 4.07 4.14
Average 38.58 3.98
Mi-M 2-Ms 13.26 24.69 25.07 26.13 1.82 2.48 2.54 2.58
M*-M 3-.. Ms 13.26 26.34 26.55 28.91 1.82 2.52 2.54 2.59
Mi-M 4-"-Ms 13.26 26.16 26.41 26.79 1.82 2.85 2.92 2.94
M 1- M4 "'Ms 13.26 36.78 37.40 37.30 1.82 2.91 2.99 3.02
M1 - Ms 13.26 25.68 25.86 26.04 1.82 2.96 3.02 3.03
M-M6 13.26 31.54 31.85 31.77 1.82 2.89 2.94 2.97
M2-M 5  19.54 27.89 28.18 29.34 1.85 2.43 2.49 2.58
M--M6 21.22 28.46 28.41 30.67 2.00 2.52 2.52 2.57
M 4 -+MS 16.85 27.81 27.95 28.38 1.82 2.83 2.88 2.93
M-.Ms 16.85 33.33 33.59 34.47 1.82 2.83 2.85 2.95
Average 1129.98 2.82

(a) Blocks-world domain.

I esions Plan length
Planner J IIA IA.1 1 f ]

IM4, M M 6 31.47 11 33.97 I 4.13 I 4.47
I M- M4 , M2- MS, M3-IM8 H 26.17 -l 35.91 H 2.43 3.58

(a) Machine-shop scheduling domain.

Table 4.3: Single-method and bias-relaxation multi-method planning.

4.2.1 Experimental Results

We have implemented the ten bias-relaxation multi-methods planners in Soar6.

Each single-method planner in a bias-relaxation multi-method planner was imple-

mented as a specialization of a general problem-space. Based on the sequence of

single-method planners, a set of meta-level control rules was provided to coordinate

which problem-space is tried next if the current problem-space does not generate

a plan for the given problem. Only within-trial learning was turned on for each

* problem, as in the experiments with the single-method planners, but learned rules
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were also allowed to transfer from an earlier method to a later method (for the same

problem). This is equivalent to the type of transfer allowed in the single-method

planners, because the scope of transfer is limited to the current trial only.

Table 4.3 compares the ten bias-relaxation multi-method planners with the

two complete single-method planners over the test set of 100 randomly generated

problems used in Chapter 3 (this test set is different from the 30- problem training

set used in developing the multi-method planners). Paired-sample Z-tests are made

for the average performance on As - because it is the only complete problem

set in this domain - between bias-relaxation multi-method planners and single-

method planners. The results reveal that bias-relaxation multi-method planners

take significantly less planning time (z=2.27, p<.05), and generate significantly

shorter plans than single-method planners (z=4.86, p<.01). In the machine-shop

scheduling domain, paired-sample Z-tests are made for the average performance on

A4 . The results show that bias-relaxation multi-method planners take slightly more

planning time than single-method planners; however, no significance is found at a

5% level (z=1.00). In terms of plan length, bias-relaxation multi-method planners

generate significantly shorter plans than single-method planners (z=3.15, p<.01)

in this domain also.

Although it has been shown that bias-relaxation multi-method planners can

outperform single-method planners (in the blocks-world domain), it does not nec-

essarily mean that, for all situations, there exists a bias-relaxation multi-method

planner which outperforms the most efficient single-method planner. In fact, the

performance of these planners depends on the biases used in the bias-relaxation

multi-method planners and the problem set used in the experiments. For example,

if the problems are so complex that most of the problems are solvable only by

the least restricted method, the performance loss by trying inappropriate earlier

methods in multi-method planners might be relatively considerable. On the other

hand, if the problems are so trivial that it takes only a few decisions for the least

restricted method to solve the problems, the slight performance gain by using more
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restricted methods in multi-method planners might be overridden by the complex-
* ity of the meta-level processing required to coordinate the sequence of primitive

planners.

4.3 Fine-Grained Multi-Method Planners

The approach to multi-method planning described so far starts with a restricted

method and switches to a less restricted method whenever the current method fails.

This switch is always made on a problem-by-problem basis. However, this is not

the only granularity at which methods could be switched. The family of multi-

method planning systems can be viewed on a granularity spectrum. While in

cow grained multi-method planners, methods are switched for a whole problem
when no solution can be found for the problem within the current method, in

fine-grained multi-method planners (denoted as Mkh,....), methods can be

switched at any point during a problem at which a new set of subgoals is formulated,

and the switch only occurs for that set of subgoals (and not for the entire problem)

[Lee and Rosenbloom, 1993]. At this finer level of granularity it is conceivable

that the planner could use a highly-restricted and efficient method over much of a

problem, but fall back on a nonlinear method without protection for those critical

subregions where there are tricky interactions.

With this flexibility of method switching, fine-grained multi-method planning

can potentially outperform both coarse-grained multi-method planning and single-
method planning. Compared with coarse-grained multi-method planning, it can
save the effort of backtracking when the current method can not find a solution or

the current partial plan violates the biases used in the current method. Moreover,

it can save the extra effort of using a less restricted method on later parts of the

problem, just because one early part requires it. As compared with single-method

planning, a fine-grained multi-method planner can utilize biases which would cause

incompleteness in a single-method planner - such as directness or protection in

the blocks-world domain - while still remaining complete. The result is that a
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[ 1Decisions Plan length
Planner2IA I HIA3 A I

Ms 22.21 129.41 29.48 29.22 3.001 3.78 13.83 3.82
M6 33.40 47.12 148.06 47.93 2.90 3.88 4.07 4.14
Average 38.58 3.98
M-.*M2--*Ms 13.26 24.69 25.07 26.13 1.82 2.48 2.54 2.58
M1-..M3--+M6  13.26 26.34 26.55 28.91 1.82 2.52 2.54 2.59
M1-.-M 4 --.Ms 13.26 26.16 26.41 26.79 1.82 2.85 2.92 2.94
M1 -..M4--*M6  13.26 36.78 37.40 37.30 1.82 2.91 2.99 3.02
M--M 13.26 25.68 25.86 26.04 1.82 2.96 3.02 3.03
Ml-..M6 13.26 31.54 31.85 31.77 1.82 2.89 2.94 2.97
M2-Ms 19.54 27.89 28.18 29.34 1.85 2.43 2.49 2.58
M3-. Ms 21.22 28.46 28.41 30.67 2.00 2.52 2.52 2.57
M4-M 16.85 27.81 27.95 28.38 1.82 2.83 2.88 2.93
M4-,,M_ 16.85 33.33 33.59 34.47 1.82 2.83 2.85 2.95
Average 129.98 2.821
MI- , 8.63 12.87 13.00 13.01 1.82 2.80 2.84 2.90
MI-3-,e 8.63 13.38 13.43 13.56 1.82 2.53 2.53 2.59
Ml--#4-*$ 8.63 13.19 13.29 13.25 1.82 3.25 3.32 3.34
M1--*4-6 8.63 13.48 13.73 13.63 1.82 2.87 2.96 2.97
Ml-,1 8.63 12.21 12.36 12.51 1.82 2.63 2.73 2.81
MI-6 8.63 13.22 13.27 13.23 1.82 2.68 2.69 2.73
M2..s 19.19 23.75 23.76 23.80 2.56 3.07 3.11 3.16
M3-- 16.62 23.45 23.56 24.22 2.03 2.56 2.57 2.71
M4-5 13.57 17.24 17.30 17.38 2.44 3.71 3.77 3.77
M4-_-6 14.10 19.28 19.58 19.83 2.41 3.33 3.43 3.46
Average I 16.44 3.04

Table 4.4: Single-method and coarse-grained multi-method vs. fine-grained multi-
method planning in the blocks-world domain.
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Planning Type
Average Coarse-

Decisions Single Grained
Planning Single 38.58 -
Type CoarsGrained 29.98 2.27* -

Fine-Grained 16.44 5.37*1 6.72**

(a) Decisions.

_ PlanI Type
Average Coane-

Plan Length Single Grained
Planning Single 3.98
Type Coarse-Grained 2.82 4.86**

Fine-Grained 3.04 3.42** 1.77

(b) Plan length

Table 4.5: Significance test results for the blocks-world domain.

0 fine-grained multi-method planner can potentially be more efficient than a single-

method planner that has the same coverage of solvable problems.

4.3.1 Experimental Results

Table 4.4 compares the bias-relaxation fine-grained multi-method planners with

6the corresponding bias-relaxation coarse-grained multi-method planners and (com-

plete) single-method planners over the same 100 test set as used in Table 4.3 in

the blocks-world domain. Paired-sample Z-tests on this data, as shown in Ta-

ble 4.5, reveal that fine-grained multi-method planners take significantly less plan-

* ning time than both single-method planners (z=5.35, p<.Ol) and coarse-grained

multi-method planners (z=6.72, p<.01). This likely stems from fine-grain multi-

method planners preferring to search within the more efficient spaces defined by

the biases - thus tending to outperform single-method planners - but being able
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Decisions Plan length
Planner AI U A, A, A4.,

M4 , I, 31.47 33.97 D 413 447
M1-M 4, M2 -- Ms, M3 -sM 6  26.17 35.91 2.43 3.58
M,_ 4, M2- 5, M3.b 18.71 19.07 2.87 3.29

(a) Experimental results for the scheduling domain.

Table 4.6: Single-method and coarse-grained multi-method vs. fine-grained multi-
method planning in the machine-shop scheduling domain.

to recover from bias failure without throwing away everything already done for a

problem (thus tending to outperform coarse-grained multi-method planners).

Fine-grained multi-method planners also generate significantly shorter plans

than single-method planners (z=3.42, p<.01). They generate slightly longer plans

than . arse-grained multi-method planners; however, no significance is found at a

5% level (z=1.77). These results likely arise because, whenever possible, both types

of multi-method planners use the more restrictive methods that yield shorter plau

lengths, while there may be little difference between the methods that ultimately

succeed for the two types of multi-method planners.

Table 4.6 illustrates the performance of these three types of planners over the

same test set of 100 problems used in Table 4.3 in the machine-shop scheduling

domain. As with the blocks-world domain, paired-sample z-tests in the scheduling

domain, as shown in Table 4.7, indicate that fine-grained planners dominate both

single-method planners (z=10.91, p<.Ol) and coarse-grained planners (z=8.95,

p<.Ol) in terms of planning time. Fine-grained planners also generate significantly

shorter plans than do the single-method planners (z=6.49, p<.01). They gener-

ate slightly shorter plans than coarse-grained multi-method planners; however, no

significance is found at a 5% level (z=1.28).

Figures 4.3 and 4.4 plot the average number of decisions versus the average

plan lengths for the data in Tables 4.4 and 4.6. These figures graphically illustrate
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43 Blocks-world domain -

* 3.5 - .... - --.-

1 o , o2.5 ------- 4-..------

ID . I D

Decisions

* Figure 4.3: Performance of single-method planners (+,coarse-grained multi-
method planners (o), and fine-grained multi-method planners ()in the blocks-
world domain.

0

5.5 Sclieduling domain

35--------------------------0

-S 4.5

* Decisions

Figure 4.4: Performance of single-method planners (+,coarse-grained multi-
method planners (o), and fine-grained multi-method planners (*) in the scheduling

* domain.
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Planning Type
Average Coarse-

Decisions Single Grained
Planning Single 33.97 - -

Type Coarse-Grained 35.91 1.00 -

Fine-Grained 19.07 10.91"* 8.95**

(b) The significance test result for decisions.

Planning Type
Average Coarse-

Plan Length Single Grained
Planning Single 4.47
Type Coarse-Grained 3.58 3.15**

Fine-Grained 3.29 6.49** 1.28

(c) The significance test result for plan lengths.

Table 4.7: Significance test results for the machine-shop scheduling domain.

how the coarse-grained approach primarily reduces plan length in comparison to

the single-method approach, and how the fine-grained approach primarily improves

efficiency in comparison to the coarse-grained approach.

4.4 Comparison with Partial-Order Planning

Partial-order planning can be more efficient than total-order planning, because

partial-order planning avoids premature commitment to an incorrect ordering be-

tween operators, and thus reduces the size of the search space [Minton et al., 1991,

Barrett and Weld, 1992]. In particular, Barrett and Weld [1992] showed experi-

mentally that the total-order planner TOCL exhibited apparently exponential time

complexity while the partial-order planner POCL maintained near-linear perfor-

mance, as the number of problems was increased in the DIS' domain. This sec-

tion compares multi-method planning with partial order planning, and shows that

multi-method planners can perform as well as partial-order planners in this domain.
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A template for generating operators in DWS' i,. illustrated as follows:

(define-operator : action A, : precondition {I)j : add {Gi}

: delete f I_1)}).

* Note that operator Ai deletes the preconditions of operator A,_,-. This implies

that for any problem in this domain, there exists a single ordering of operators

which solves that problem.

Planning in TOCL is similar to planning in M 6 (without learning) in the sense

that both are complete and search over the space of sequences of task operators. In

the search, operators can be tried which are not provably right, and backtracking

can occur if the choice is wrong. In contrast, POCL searches over the space of

* ordering constraints. It tries out constraints that may be right, and then back-

tracks over them if they prove wrong. In general, POCL can outperform TOCL by

avoiding premature step-ordering constraints.

The performance of TOCL can be improved by adding EBL. The idea is that

* if a control rule is learned by EBL when a failure occurs and this rule can cut off

all similar failure paths, then TOCL may perform as well as POCL. However, this

may not lead to linear performance, because EBL is committing even less than least

commitment planning with respect to adding constraints. In EBL, constraints (i.e.

preference rules) are generated only when they are provably correct, and they are

never backtracked over. Proving that a constraint is correct can be a non-trivial

task, and may not guarantee a polynomial complexity in planning time. On the

* other hand, in POCL the added constraints are not proved correct. In the D1 S1 do-

main, however, the constraints generated by POCL do work without backtracking,

since there is no operator which adds a precondition of another operator.

Bias-relaxation multi-method planning can improve the performance of TOCL,

because a bias allows learning constraints based on weaker proofs if they prove

wrong, and multi-method planning allows backtracking over these constraints. In

3D1 S1 means that there is one entry in its operator's delete set and it only takes one step to
• achieve a goal.
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this domain, a bias, called precondition protection is used, which eliminates all plans

in which disachieved preconditions are reachieved. A multi-method planner can be

constructed which consists of a method using precondition protection (denoted

as M.) and one without it - that is, the least restricted planner (M6 ). In fact,

a precondition protection bias is weak enough to solve all problems (thus M. is

complete) in this domain. However, M. itself may not be complete for other

domains. In that case, Backtracking across incorrect preference rules (that is across

methods) can happen in M,--M6 .

M__I__" POCL
Number of Number of C U Lime Number of CPU Time

Goals Nodes (S) (Sec.) Nodes (S' +0) (Sec.)
1 1 0.07 2 0.03
2 2 0.09 4 0.05
3 3 0.09 6 0.06
4 4 0.09 8 0.10
5 5 0.13 0.13
6 6 0.56 12 0.15
7 7 0.12 14 0.17
8 8 0.14 16 0,19
9 9 0.17 18 0.23
10 10 0.18 20 0.26
11 11 0.20 22 0.31
12 12 0.21 24 0.31
13 13 0.24 26 0.33

Table 4.8: Experimental results for M,-.M 6 and POCL

Table 4.8 shows experimental results for Mp-.-M 6 and POCL for 13 problems

in the D'S 1 domain. In terms of the number of nodes visited, both planners show

linear performance. Note that the definitions of node in the two planners are dif-

ferent because their search spaces are different. In Mp.-.M 6 , a node represents an

element of the space of operator sequences (S), whereas in POCL a node repre-

sents an element of the space of the set of operators (S') plus the set of ordering
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constraints among them (0). This explains the factor of two between these two

columns.

The data for CPU time also exhibit (near) linear performance in both planners.

Although the simulation for these planners is done on the same machine, the dif-

ferences in CPU time for these two planners do not imply much, because they are

coded in different languages (Soar on top of C for Mp,-.M 6 and Lisp for POCL).

Nevertheless, the (near) linear performance of M,-*Ms suggests that Mp-*M 8 can

perform as well as POCL, in this domain.

4.5 Summary

* In this chapter the notion of monotonicity in sequential multi-method planning

is investigated. In a monotonic multi-method planner, the single methoua ..ae

sequenced according to increasing coverage and decreasing efficiency. A formal

analysis shows that (1) if the cost of failure for a restricted planner is always less

than the cost of success for a more relaxed planner, then monotonic multi-method

planners outperform corresponding time-shared multi-method planners; otherwise,

time-shared multi-method planners may perform better; (2) a monotonic multi-

method planner takes less planning time than the corresponding single-method

planner, if the performance gain by using a cheaper method is greater than the

wasted time by using inappropriate methods in the monotonic multi-method plan-

ner; and (3) the lengths of plans generated from a monotonic multi-method planner

and the corresponding time-shared multi-method planner are less than or equal to

the length of plans generated from the corresponding single-method planner.

A set of bias-relaxation multi-method planners has been constructed. In bias-

relaxation multi-method planning, each bias is evaluated in isolation. Thus, bias-

relaxation multi-method planning has a restricted scope in creating and compar-

ing individual methods. The constructed bias-relaxation multi-method planners

vary in the granularity at which individual methods are selected and used. De-

* pending on the granularity of method switching, two variations on bias-relaxation
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multi-method planners are implemented: coarse-grained multi-method planners,

where methods are switched on a problem-by-problem basis; and fine-grained multi-

method planners, where methods are switched on a goal-by-goal basis.

The experimental results in the blocks-world and machine-shop-scheduling do-

mains imply that (1) in terms of planning time, fine-grained multi-method plan-

ners can be significantly more efficient than coarse-grained multi-method planners 4

and single-method planners; and (2) in terms of plan length, both fine-grained

and coarse-grained multi-method planners can be significantly more efficient than

single-method planners.

Finally, the comparison of multi-method planning with partial-order planning

in D'S 1 suggests that multi-method planning can be as efficient as partial-order

planning in terms of planning performance.
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Chapter 5

Application to a Complex Domain

The investigations of multi-method planning in the previous chapter have occurred

in the context of the blocks-world and machine-shop scheduling domains. These

* are classical planning domains that provide good environments for developing and

evaluating multi-method planners. However, the intent her- is to transfer the multi-

method planning technology to a more realistic domain; in particular, a simulated

battlefield domain.

* The task focused on in this domain is to simulate automated intelligent agents

that can accomplish tactical missions in navy fighters. One interesting aspect of

this domain is that the main criterion to evaluate planning is how well the missions

can be accomplished, whereas planning time and plan length are secondary criteria.

This chapter shows how the multi-method planning framework can be applied to

domains with such a criterion.

Since this domain involves the complexity of the real world and the domain it-

* self is not clearly defined, the full implementation of a planner that can be used in

such agents is beyond the scope of this thesis. The focus in this thesis is on inves-

tigating the issues related to planning in this domain and demonstrating planning

capabilities that multi-method planners have, rather than developing a real planner

that can actually be deployed. The application of multi-method planning to this

domain will help both in evaluating the degree of domain independence provided by

the multi-method planning framework, as well as being a step toward integrating

* the technology into a broader agent.
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This chapter begins with an overview of simulated battlefield environments and

describes the tactical air simulation task. Then, it demonstrates how multi-method •

planning can be applied to this task.

5.1 Simulated Battlefield Environments

The goal of the work in a simulated battlefield environment is to create agents that

act as virtual agents to participate in exercises with real human agents. These

exercises are to be used for training as well as for development of tactics. In order

for these exercise to be realistic, the agents must be able to behave as much like 4

humans as possible.

To approximate human behaviors, the agents must have capabilities including

obeying tactical missions, planning and reacting in real time, adapting to new situ-

ations, learning from experience, exhibiting the cognitive limitations and strengths

of humans, interacting with other agents, and so on. Developing agents with such

capabilities is a non-trivial task with many real-world complexities.

Soar-IFOR is an attempt to build such agents within the Soar architecture.

Soar is a promising candidate for developing such agents, because it is a single

unified system which can integrate various components of Al technologies such

as problem-solving, planning, reasoning, learning, perception, motor control, and

so on. In addition, Soar is the basis for the development of unified theories of

human cognition [Newell, 1990], and thus can provide an appropriate framework

for modeling human like agents.

To begin the effort to build automated intelligent agents for simulated battle-

field environments, Soar-IFOR has mainly focused on creating specific automated

agents, called TacAir-Soar, for simulated tactical air environments [Jones et al.,

1993, Rosenbloom et al., 1994].
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5.2 Tactical Air Simulation

The goal of building TacAir-Soar is to construct automated intelligent agents for

flight simulators that are used to train navy pilots in flight tactics. For example, it

can be used in simulating a Barrier Combat Air Patrol (BARCAP) mission; that is,

to patrol the skies to protect a High-Value Unit (HVU) such as an aircraft carrier.

During the course of the mission, if the agent detects a hostile aircraft, it intercepts

the aircraft by firing missiles and then resumes its patrol.

One of the important characteristics of tactical air simulation is that it is a

highly reactive, real-time, I/O intensive task. Thus, the agents must be able to

make decisions in real-time and react appropriately according to the changes in the

environment. On the other hand, it is a highly goal-oriented (or mission-oriented)

task. The goals include accomplishing multiple missions and survival. Thus, the

agent must have a planning capability which can deal with multiple goals at the

same time.

Dealing with multiple goals involves the following issues: how to represent mul-

tiple goals Pnd their interaction, how to generate appropriate actions that satisfy

multiple goals at a time, how to decide on appropriate actions when multiple goals

require conflicting behaviors, which goals can be ignored if necessary, and so on.

The next section presents a prototype agent which employs the multi-method

planning technique for tactical air simulation, and demonstrates how multi-method

planning can deal with these multiple goal issues. Although TacAir-Soar is a highly

reactive agent, the implementation of the prototype agent based on the multi-

method planning technique focuses on the planning capabilities only, and not on

the reactive capabilities.

5.3 Implementation

The application of multi-method planning in tactical air simulation is based on

a beyond-visual-range (BVR) 1-v-i aggressive bogey scenario [Jones et al., 1993,
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Johnson, 1994, Tambe and Rosenbloom, 1994]. This scenario involves two armed

aircraft with similar capabilities. One aircraft (F14) is attempting to protect a

high-value unit and the other (MiG29) is attempting Lo destroy it. When the two

aircraft come in contact, they both attempt to intercept and destroy each other,

with the overall goals of accomplishing their missions - here, protecting the HVU

(or attacking the HVU) - situational awareness, and surviving.

Protect Situational

Select GetMissile APushFire Support

Missile LAR Botton Missile

Figure 5.1: A skeleton of the goal hierarchy for the 1-v-i aggressive bogey scenario.

While performing BARCAP, if a bogey (an unknown aircraft) is noticed, the

F14 tries to determine whether the bogey is a bandit (an enemy aircraft). If the

bogey is identified as a bandit, the F14 attempts to destroy it by firing missiles.

In order to destroy it, the F14 selects a missile - a long-range missile (LRM)
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here - and approaches the MiG29 close enough to get into its LRM's launch-

acceptability region (LAR). After launching a LRM, the F14 makes --i F-pole (a

maneuver involving a 25-50 degree turn) to provide radar guidance to the missile,

while decreasing the closure between the two aircraft. The fight continues until

one aircraft is destroyed or runs away. A skeleton of the goal hierarchy for this

scenario from the F14's point of view is shown in Figure 5.1.

The key issue in implementing a planner in this domain is that some goals can

never be achieved completely. These goals are called maintenance goals. Protect-

HVU, situational-avareness and survive are such examples. Thus, the role of

an operator for a maintenance goal is not to achieve the goal but to continuously

maintain the status of the goal. For example, a single application of the oper-

ator BARCAP does not achieve the goal protect-HVU. By applying this operator

continuously, the HVU remains protected.

Maintenance goals make it possible to define multiple achievement-levels rather

than two levels - achieved and unachieved. For example, the achievement-level

for the goal protect-HVU is maximum when there is no threat to the HVU, while

the achievement-level for this goal is minimum when the HVU is destroyed. When

a bogey is noticed, the achievement-level is decreased from the maximum, because

the bogey can potentially destroy the HVU. If the bogey is identified as a bandit,

the achievement-level is further decreased.

From the opposite point of view, one can define multiple threat-levels for each

maintenance goal; that is the threat-level is maximum when the achievement-level

is minimum, and vise versa. For each maintenance goal, operators which decrease

the threat-level for that goal are proposed.

The multiple threat-level scheme allows the notion of protection to be refined

for maintenance goals. Instead of protecting achieved goals from being undone,

it protects the threat-levels for other goals from being increased. The strongest

form of protection in this domain, denoted as GPo, eliminates all plans in which

an operator increases the threat-level of another goal. Weaker forms of protection,

denoted as GP (i=1, ...,n-2, where n is the number of threat-levels) eliminates
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al plans in which an operator increases the threat-level of another goal by more

than i1.

Goal Flexibility Dimension

Directness Nonlinear

GPo
Goal Protection GPI

Dimension

No GP _ I _I

Table 5.1: The 2xn planning methods generated from directness and protection,
where there are n threat-levels.

The notions of directness and linearity are not changed here. However, using

a linearity bias is dangerous in this domain, because focusing on only one goal

conjunct and just ignoring other goals conjuncts until the current one is completely

achieved may cause a failure - that is, either the aircraft or the HVU may be

destroyed. This yields a set of 2 x n planning methods derived from the two bias

dimensions (Table 5.1).

The key to implementing the prototype agent is that the threat-levels for main-

tenance goals must remain as low as possible. By doing so, the probability that

one (or some) of the maintenance goals is seriously threated can be decreased.

Single-method planners are not appropriate because if their biases are too strong,

they cannot solve the problem without seriously threatening other goals. On the

other hand, if their biases are too weak, planning takes too much time since the

search space is too large.

Based on the planning methods shown in Table 5.1, a fine-grained multi-method

planner is implemented for the l-v-1 scenario. Figure 5.2 presents an example of

1Another possible refinement is to use protection biases which eliminate all plans ir which an
operator increases the total threat-levels across all other goals by more than i.
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Threat-level Threat-type
0 No threat
1 Potential threat
2 Minor threat
3 Intermediate threat
4 Major threat
5 Fatal threat

(a) Six threat-levels for 1-v-1 aggressive bogey scenario.

Current state: The bandit is aggressive.
Proposed Threat-Level Change

Goal Operator Goal Before After
protect-HVU DESTROY-BANDIT protect-HVU 3 2

survive 3 4
survive ESCAPE survive 3 1

1 1 protect-HVU 3 5

Selected operator: DESTROY-BANDIT.

(b) Operator selection when the bandit is aggressive.

Table 5.2: Example of fine-grained multi-method planning for tactical air domain.

how the implemented fine-grained multi-method planning actually works. In this

implementation, six threat-levels are used as shown in Figure 5.2 (a).

Figure 5.2 (b) shows how an operator is selected when multiple operators are

* proposed in the situation that the bandit is aggressive. In this situation, the threat-

levels for both goals protect-HVU and survive are set to three, because the aggres-

sive behavior of the bandit is considered as a medium level of threat for protecting

the HVU and surviving. For the goal protect-HVU, the DESTROY-BANDIT opera-

tor is proposed which can decrease the threat-level to minor threat. For the goal

survive, the ESCAPE operator is proposed which can decrease the threat-level to

potential threat. In evaluating these operators, however, applying escape increases

* the threat-level for the other goal protect-HVU to fatal threat, whereas applying

91

0



0

DESTROY-BANDIT increases the threat-level for survive to major threat. Since

DESTROY-BANDIT increases the threat-level for the other goal less than SURVIVE,

DESTROY-BANDIT is selected here.

5.4 Summary 0

In this chapter, how multi-method planning can be applied to a tactical air domain

is briefly discussed. A preliminary investigation is made of some of planning issues

in this domain such as how to deal with maintenance goals and how to decide on 0

appropriate actions when multiple goals require conflicting behaviors. In doing this,

the notion of protection is refined such that one protects the threat-levels for other

goals from being increased. Multi-method planning based on refined protection

biases shows how appropriate actions can be generated by this planner. 0
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Chapter 6

Related Work

This chapter describes work related to the multi-method planning framework. Sec-

tion 6.1 describes biases used in other planning systems. Section 6.2 compares the

planning and learning framework in Soar to other planning frameworks. Finally,

Section 6.3 compares the presented multi-method planning technique to other re-

lated approaches.

6.1 Biases in Planning

Some of the planning biases used here have been introduced by earlier planning

systems as planning heuristics. For example, the linearity assumption has been

used in planners using a goal stack because of its simplicity [Fikes and Nilsson,

1971]. Also, protection has been used in many planners to reduce the size of the

search space and to avoid generating non-optimal plans. These two biases are

discussed in more detail here.

6.1.1 Linearity

In a conjunctive goal problem, the assumption that subgoals can be achieved se-

* quentially and thus that the generated plan is a sequence of complete subplans for
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the conjunctive goals is known as the linearity assumption [Sussman, 19731. Al-

though many problems cannot be solved without interleaving goal conjuncts, this 0

assumption has two interesting properties.

First, it makes the original problem simpler by allowing decomposition of the

problem into a set of subproblems and then solving each subproblem in sequence. 40

Since only a single goal conjunct is considered for each subproblem, the search

space to solve the entire problem can be reduced.

Second, it provides a basis for classifying a group of problems in terms of a 0

problem's complexity. Korf [1987] provided a more refined taxonomy about how

subgoals interact with each other. He defined a set of subgoals to be independent if

each operator only changes the distance to a single subgoal. Though this definition

is based on a very strong assumption about goal interference, an optimal global

solution can be achieved by simply concatenating together optimal solutions to the

individual subproblems in any order. Solving a single independent subgoal might

be nontrivial, but the complexity of problems with independent subgoals increases

only linearly with the number of subgoals.

Also, he defined a set of subgoals to be serializable if there exists an ordering

among the subgoals such that the subgoals can always be solved sequentially with-

out ever violating a previously solved subgoal in the order. Since this definition is

based on the linearity assumption and goal protection, a problem which consists

of serializable subgoals can be classified as an element of A2 - that is, the set of

problems solvable by the linear protection method - in the multi-method planning

framework.

Barrett and Weld [19921 defined a set of subgoals to be trivially serializable if

they can be solved in any order without ever violating a previous solved subgoal.

From this definition it is implied that if a set of subgoals is independent, it is

trivially serializable, and that if a set of subgoals is trivially serializable, it is

serializable.
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6.1.2 Protection

The notion of protection was introduced in HACKER [Sussman, 1973]. In HACKER,

a protection violation is detected if "a protected subgoal is clobbered between

the time it is established and the time it is no longer needed" [Sussman, 1973,

page 63]. HACKER deals with protection violations by employing procedures called

critics that recognize such violations. When necessary, HACKER is able to repair

the plan by rearranging the steps in the plan.

Waldinger [1977] developed an approach, called goal regressio? 0 protect

achieved goals. It involves creating a plan to solve one subgoal followed by con-

structive modifications to achieve the other subgoals. It differs from HACKER in

that it uses the notion of goal protection to guide the linear placement of actions in

* the plan. Rather than building incorrect plans and then debugging them, it ouilds

partial linear plans in non-sequential order and moves subgoals backwards through

the partial linear plans to where they do not interfere with other subgoals. Vere

[19831 also developed a technique, called splicing, which relaxes protection when it

has caused a deadlock.

SNLP uses causal links to represent protection intervals and deals with threats

to them.

6.2 Planning and Learning in Soar

In the thesis, planning operators are represented by operator proposal rules, op-

erator application rules, goal expansion rules, and instantiated Soar operators in

working memory. However, this is not the only way to represent planning operators

in Soar. For example, Unruh's [1993] operator representation for abstraction in-

cludes rules to check operators' preconditions explicitly before applying operators.

Also, in Soar, goal expansion for a violated precondition is usually implemented

by creating a new Soar subgoal and achieving the violated condition within the

* subgoal, via the operator subgoaling scheme [Laird et al., 1987].
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Planning in Soar is similar to planning in PRODIGY in that both systems use

a set of preference-based control rules to yield a sequence of operators. One of

the differences between these two systems is that while Soar learns control rules

from the result of look-ahead search, PRODIGY learns control rules from its own

problem-solving trace [Minton, 1988] or from a static analysis of the domain theory

[Etzioni, 1990a]. Another difference is that original PRODIGY (version 2.0) uses a

linear planning approach [Minton et al., 1989]. Veloso [1989] developed a nonlinear

version of PRODIGY, but the learning method used was a cased-based approach.

6.3 Multi-Method Planning

The basic approach of bias relaxation in multi-method planning is similar to the

shift of bias for inductive concept learning (Russell and Grosof, 1987, Utgoff, 19861.

In the planning literature, this approach is closely related to an ordering modifica-

tion which is a control strategy to prefer exploring some plans before others [Gratch

and DeJong, 1990]. If the preference is wrong, the alternatives will be eventually

reached. Thus, ordering modification retains planner completeness. They explicitly

distinguished this modification from structural modification which prunes portions

of the potential plan space. Planning systems which employ multi-method plan-

ning techniques include STEPPINGSTONE [Ruby and Kibler, 1991], and FAILSAFE-

2 [Bhatnagar and Mostow, 1990]. These two systems are discussed in more detail

here, and a comparison of multi-method planning with partial order planning is

presented.

6.3.1 STEPPINGSTONE

STEPPINGSTONE is a learning problem-solver that decomposes a problem into sim-

ple and difficult subproblems. It solves Lhe simple subproblems with an inexpensive

constrained problem solver. To solve the difficult subproblems, STEPPINGSTONE

uses an unconstrained problem solver. Once it solves a difficult subproblem, it uses

the solution to generate a sequence of subgoals, or steppingstones, that can be used
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by the constrained problem solver to solve this difficult subproblem when it occurs

again.

The constrained problem solver takes as input a set of subgoals which are

ordered based on a heuristic called openness. It attempts to solve the subgoals

in the given order, and generate a solution for the subgoals, if one is found. The

constraint used in this problem solver is that each solved subgoal is protected. If

the constrained problem solver is unable to solve a subgoal, a memory component

is called. The memory component is based on a case-based approach. It matches

* the current problem-solving context - that is, the subgoal currently being solved,

the currently protected subgoals, and the current state - with stored contexts,

then returns the ordered subgoals for the matching context. When the memory

component fails to return any useful subgoal ordering, the unconstrained problem
* solver is called. The unconstrained problem solver relaxes the protection on the

solved subgoals to find a solution.

Since STEPPINGSTONE generate a solution according to the prescribed subgoal

* ordering, the constrained problem solver is comparable to M2 (the linear planner

with protection), while the unconstrained problem solver is comparable to Ms

(the linear planner without protection). This implies that STEPPINGSTONE is

close to the sequential multi-method planner M 2 --+ M5 ; however, the difference

• between these two is that STEPPINGSTONE has a cased-based memory component

in between M 2 and M5, which is analogous to the transfer of control rules across

problems.

6.3.2 FAILSAFE-2

FAILSAFE-2 (FS2) is a system that performs adaptive search by learning from its

0 failures. The FS2 problem solver uses two types of search control knowledge: goal

selection rules to constrain the selection of which goal to pick as the next current

goal; and censors to constrain the selection of which operator to apply to the

current state.
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There are two types of interactions between the problem solver and learner.

The first type occurs when the search is under-constrained. The symptoms of

under-constrained search include violating a protected goal, reaching a state-loop,

and exceeding a preset goal-depth limit. If any of these symptoms is found, the

problem solver declares a failure and invokes the learner. If the learner is able to

identify the problem solving step that led to the failure, it adds a new censor to

prevent similar failures in the future.

The other type of interaction between the problem solver and learner occurs

when the search is over-constrained. Over-constrained search prunes away all so-

lution paths. Domain-independent heuristics are used to detect over-constrained

search. When it is detected, the problem solver calls a heuristic procedure which

relaxes a censor. If relaxing the censor leads to achieving the current goal, FS2

infers that the censor was over-general and calls the learner to specialize it.

The basic idea of censor relaxation in Fs2 is close to the bias relaxation mech-

anism in the thesis. However, there are a number of differences, such as the gran-

ularity at which censors are relaxed and the way censors are relaxed. Whenever

applying an operator to the current state violates a censor, that state is marked as

suspended. Once the problem solver cannot make progress by forward search with

the censor, FS2 selects one of the suspended states that is likely to be closest to

the goal based on a heuristic, and uses a weak form of backward chaining (WBC)

which recurses on the failed preconditions of an operator one at a time. If a solu-

tion is found by this relaxation, the censor is specialized, so that so that it does

not prevent the expansion of the search tree in the future.

6.3.3 Partial Order Planners

Fine-grained multi-method planning is related to traditional partial-order plan-

ning, where heuristics are used to guide search over the space of partially ordered

plans without violating planner completeness. For example, SNLP [McAllester and

Rosenblitt, 1991, Barrett and Weld, 1992 uses a heuristic which prefers nodes with

fewer unresolved goals. Using directness in fine-grained multi-method planners is
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similar to this heuristic, because applying an operator without violating directness

reduces the number of unachieved goals by at least one.

The least-commitment approach can be viewed as planning which starts with

the strong assumption that the problem can be solved without any ordering con-

straints, and relaxes that assumption by adding ordering constraints successively

only as it is necessary. In this sense, it is similar to the bias-relaxation approach

which starts from a set of biases and relaxes the biases only when the problem (or

subproblem) cannot be solved with those biases.
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Chapter 7

Conclusion
0

This chapter summarizes the methodology used in the thesis and the results, and

then presents some of the limitations of this methodology and future work.

7.1 Summary of the Approach and Results

In this thesis, two hypotheses are investigated in depth: (1) no single planning

method will satisfy both sufficiency and efficiency for all situations; and (2) multi-

method planning can outperform single-method planning in terms of sufficiency

and efficiency. To evaluate these hypotheses, a set of single method planners and

a set of multi-method planners have been created. The creation of these planners

is based on the notion of bias in planning.

Bias is a useful notion in planning because it can potentially reduce compu-

tation effort by reducing the number of plans that must be examined, and it can

potentially generate shorter plans by avoiding plans containing inefficient operator

sequences. By varying the amount of bias used, a set of planning methods with

different performance and scope can be generated.

To evaluate the first hypothesis, a system has been constructed that can uti-

lize different single-methods, which are defined along two bias dimensions: goal-

flexibility, and goal-protection. The goal-flexibility dimension determines the de-

gree of flexibility the planner has in generating new subgoals and in shifting the

focus in the goal hierarchy. This dimension subsumes directness and linearity
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biases. The goal-protection dimension determines whether or not an achieved top-

level goal conjunct is protected between the time it is achieved and the time it is no

longer needed. By taking the cross-product of these two dimensions, six different

methods are created.

These methods have been implemented in Soar. In Soar plans are represented

as sets of variabilized control rules and sets of instantiated preferences that jointly

specify which operators should be executed at each point in time. The effect of

learning in these methods with respect to the performance of planning has been

investigated. The six implemented methods have been compared empirically in

terms of planner completeness, planning time, and plan length. The experimental

results show a trade-off between completeness and efficiency for these methods -

that is, if a method is too restricted, it cannot generate plans for some problems,

while if it is too relaxed, it takes too much time in generating plans, and the

generated plans are inefficient.

As an alternative approach to single-method planners, multi-method planners

have been created. A multi-method planner consists of a coordinated set of plan-

ning methods, where each individual method has different scope and performance.

Given a set of created methods, the key issue here is how to coordinate the methods

in an efficient manner so that the multi-method planner can have high performance.

This includes issues of selecting appropriate methods as situations arise, and the

granularity of method switching as the situational demands shift.

For the method selection issue, two ways of organizing individual methods in
a multi-method planner - sequential and time-shared - have been compared

analytically. The wasted effort in a sequential multi-method planner is the cost of

trying earlier methods in the sequence, whereas the wasted effort in a time-shared

multi-method planner is the cost of trying all methods in the method set except the

one that actually solves the problem. The wasted effort in sequential multi-method

planning is sensitive to the ordering of the methods because it takes too much time

if earlier methods are not efficient enough, or in an extreme case, it may not be

* able to generate a plan at all if one of the earlier methods does not halt. On the
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other hand, the wasted effort in time-shared multi-method planning is sensitive to

the number of individual methods.

As an approach to reducing the wasted time in sequential multi-method plan-

ning, monotonic multi-method planning has been investigated. In a monotonic

multi-method planner, the individual methods are ordered according to decreas-

ing efficiency and increasing coverage based on the empirical performance of those

methods for a training set of problems. A formal analysis shows that (1) & mono-

tonic multi-method planner takes less planning time than the corresponding single-

method planner, if the performance gain by using a cheaper method is greater than

the wasted time by using inappropriate methods in the monotonic multi-method

planner; and (2) the lengths of plans generated from a monotonic multi-method

planner are less than or equal to the length of plans generated from the correspond-

ing single-method planner.

To restrict the scope of individual methods to be generated and compared, a

set of bias-relaxation multi-method planners has been constructed based on the

notion of effective bias. In a bias-relaxation multi-method planner, planning starts

by trying highly efficient methods, and then successively relaxes effective biases

until a sufficient method is found.

The second issue of coordinating individual methods in multi-method planning

is the granularity at which individual planning methods are be switched. While in

coarse-grained multi-method planners, methods are switched for a whole problem

when no solution can be found for the problem within the current method, in fine-

grained multi-method planners methods can be switched at any point during a

problem at which a new set of subgoals is formulated, and the switch only occurs

for that set of subgoals (and not for the entire problem). Both coarse-grained

multi-method planners and fine-grained multi-method planners are implemented

via bias relaxation.

There is a trade-off between coarse-grained multi-method planning and fine-

grained multi-method planning. A coarse-grained multi-method planner finds a

solution within the first method that has one at the cost of searching the entire
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biased space in the worst case. On the other hand, a fine-grained multi-method

planner can save the effort of searching all other alternatives within the current

method; however, it does not guarantee to find a solution that may exist within

the current biased space.

The experimental results in the blocks-world and machine-shop-scheduling do-

mains imply that (1) in terms of planning time, fine-grained multi-method plan-

ners can be significantly more efficient than coarse-grained multi-method planners

and single-method planners; and (2) in terms of plan length, both fine-grained

and coarse-grained multi-method planners can be significantly more efficient than

single-method planners.

In summary, the primary contribution of this thesis is to develop a new multi-

method planning framework. This framework is developed based on the notion

of bias (for method creation), and the notions of monotonicity, bias-relaxation,

and the granularity of method switching (for method coordination). The exper-

imental results indicate that, at least for the domains investigated, the created

multi-method planners are more efficient than complete single-method planners.

7.2 Limitations and Future Work

The multi-method planning framework investigated in this thesis is based on three

biases: linearity, protection, and directness. One way to enhance the multi-method

planning framework would be to extend the set of biases available. These biases

include ones that limit the size of the goal hierarchy such as goal-depth or goal-

breadth (to reduce the search space), limit the length of plans generated such as

plan-length (to shorten execution time), and lead to learning more effective rules

such as goal-nonrepetition (to increase transfer).

The multi-method planners used here do not guarantee finding optimal plans

for a given problem. However, if a plan-length bias is incorporated with coarse-

grained multi-method planning, where the bound is incrementally specified along

with the sequence of individual methods, the multi-method planner will be able to
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find optimal plans for all problems. In fact, this approach implements depth-first

iterative-deepening [Korf, 1985] on the length of plans generated.

The bias selection approach used here is based on preprocessing a set of train-

ing examples in order to develop fixed sequences of biases (and methods). This

approach has a limitation when it is hard to generate testing problems or when

the problem distribution is unknown. A more dynamic, run-time approach would

be to learn, while doing, which biases (and methods) to use for which classes of

problems. If such learned information can transfer to the later problems, much of

the effort wasted in trying inappropriate methods may be reduced.

One problem of learning about which methods to use for which classes of prob-

lems in the current multi-method framework is that some rules (chunks) are ex-

pensive. Restricting expressiveness on the encoding of tasks such as by the unique-

attribute scheme can solve this problem [Tambe et al., 1990]; however the learned

rules based on this scheme may not be general enough to transfer to the later

problems because of the limited expressibility. Another approach to solving the

expensive churk problem is to incorporate search control knowledge into the ex-

planation [Kim and Rosenbloom, 1991]. This approach can solve expensive chunk

problem without restricting expressiveness. Learned rules can be used with the

cost bounded by the cost of the problem solving from which it was learned.

The methodology for generating a set of monotonic multi-method planners or a

set of bias-relaxation multi-method planners does not specify which multi-method

planner is the optimal one for a given problem distribution. Greiner [1992] devel-

oped an algorithm called PALO which searches the space of performance elements

and selects a near locally optimal element by using statistical techniques to ap-

proximate the distribution. By employing the PALO algorithm in the multi-method

planning framework, it may be possible to generate the r ptimal multi-method plan-

ner for a given distribution.

Within simulated battlefield environments, the focus of this thesis is on planning

based on beyond-visual-range 1-v-1 aggressive bogey scenario. One of the direc-

tions for future work in this domain includes applying the technique described in
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Chapter 5 to other scenarios, such as l-v-2, 2-v-1, and 2-v-n scenarios, or Within
* Visual Range scenario. Application to air-to-ground or ground-to-ground combat

simulation would be another possibility.

0
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Appendix A

Experimental Results: The Blocks-World

Domain

This appendix gives the detailed numeric information from the experiments in

the blocks-world domain. Appendix A.1 presents the experimental results for the

six single-method planners over 30 training problems. Appendix A.2 presents the

experimental results for the six single-method planners and the created multi-

method planners over 100 test problems.
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A.1 Performance over 30 Training Problems

Method M -

Number Block. Goals ITril I rial 2 T 3 Awap I TDilaTial 2 Trial 3 ALe=gt
1 4 3 .. . .

* 2 4 3 16 16 16 16.0 2 2 2 2.0
3 4 4 .. . .
4 3 3 29 31 30 30.0 3 3 3 3.0
5 4 3 a 8 8 8.0 1 1 1 1.0
6 4 2 . . .. . .

7 3 2 . .. . .
8 3 2 S 8 8 8.0 1 1 1 1.0
9 3 3 . . - - I

10 4 4 8 8 8 8.0 1 1 1 1.0
11 4 4 - - -

12 4 2 . . .. . .

13 3 3 25 29 30 28.0 3 3 3 3.0
14 4 3 3 3 3 3.0 0 0 0 0.0
15 3 3 17 17 17 17.0 2 2 2 2.0
16 3 2 8 8 8 8.0 1 1 1 1.0

O 17 3 2 9 9 9 9.0 2 2 2 2.0
18 4 2 16 16 16 16.0 2 2 2 2.0
19 4 4 a 8 8 8.0 1 1 1 1.0
20 3 2 . . ..

21 3 3 . . ..
22 3 2 8 8 8 8.0 1 1 1 1.0
23 4 3 - - - -

24 3 3 8 8 8 8.0 1 1 1 1.0
* 25 4 2 9 9 9 9.0 2 2 2 2.0

26 4 2 16 16 16 16.0 2 2 2 2.0
27 4 2 - - - - -

28 4 3 . .. . .
29 4 3 . .. ..
30 3 2 . .. .

Total 196 202 202 200.0 25 25 25 25.0
* SolvedPobem , 16 16 16 16.0 16 16 16 16.0

-Averae r 12.25 12.62 12.62 12.50 1 1.56 1.56 1.56 1.L

Table A.I: Performance of M1 over 30 training problems in the blocks-world do-
main.
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Method M2  _ _ _ __ _ _ _

Problem, Dedions PlM Lmth
Number Blocks (Goa Trial I Tia1 2 T-1 Q3 Averae Trial Tr12 ihl Al a. 3

1 4 3 19 19 40 26.0 4 4 4 4.
2 4 3 16 16 16 16.0 2 2 2 2.0
3 4 4 . .. ..
4 3 3 34 33 32 33.0 3 3 3 3.0
5 4 3 6 a a 8.0 1 1 1 1.0
6 4 2 27 27 31 28.3 4 4 4 4.0
7 3 2 26 27 27 26.7 3 3 3 3.0
8 3 2 8 8 8 8.0 1 1 1 1.0
9 3 3 . .. ..

10 4 4 8 6 6 8.0 1 1 1 1.0
11 4 4 36 25 35 32.0 4 3 4 3.7
12 4 2 31 33 25 29.7 3 3 3 3.0
13 3 3 33 25 34 30.7 3 3 3 3.0
14 4 3 3 3 3 3.0 0 0 0 0.0
15 3 3 16 16 26 19.3 2 2 2 2.0
16 3 2 8 8 8 8.0 1 1 1 1.0
17 3 2 9 9 9 9.0 2 2 2 2.0
18 4 2 16 16 16 16.0 2 2 2 2.0
19 4 4 8 8 8 8.0 1 1 1 1.0
20 3 2 32 25 25 27.3 3 3 3 3.0
21 3 3 26 28 27 27.7 4 4 3 3.7
22 3 2 a 8 8 8.0 1 1 1 1.0
23 4 3 25 34 25 28.0 3 4 3 3.3
24 3 3 8 a a 8.0 1 1 1 1.0
25 4 2 9 9 9 9.0 2 2 2 2.0
26 4 2 16 16 16 16.0 2 2 2 2.0
27 4 2 18 27 29 24.7 3 4 5 4.0
28 4 3 25 31 43 33.0 3 3 5 3.7
29 4 3 . -

30 3 2 . -

Total 475 475 524 491.3 59 60 62 60.3
Solved Problems 26 26 26 26.0 26 26 26 26.0

Average 18.27 18.27 20.15 18.90 1 2.27 2.31 2.38 2.32

Table A.2: Performance of M 2 over 30 training problems in the blocks-world do-
main.
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( ________________Method M 3  ____________

_______ Decisions Plan I
[INme ^l[Tra Til2 Trial 3 Average ITHI 1 Tha 2 Ta vrg

1 4 3 19 19 41 26.3 4 4 4 4.0
2 4 3 16 16 16 16.0 2 2 2 2.0

3 4 4
4 3 3 33 32 33 32.7 4 3 4 3.7
5 4 3 8 a 8 8.0 1 1 1 1.0
6 4 2 34 50 202 95.3 4 5 5 4.7
7 3 2 33 33 33 33.0 3 3 3 3.0
8 3 2 8 8 8 8.0 1 1 1 1.0
9 3 3

10 4 4 8 8 8 8.0 1 1 1 1.0

11 4 4 32 72 48 50.7 3 5 4 4.0
12 4 2 46 32 40 39.3 3 3 3 3.0
13 3 3 32 32 41 35.0 3 3 4 3.3
14 4 3 3 3 3 3.0 0 0 0 0.0
15 3 3 16 24 16 18.7 2 2 2 2.0
16 3 2 8 8 8 8.0 1 1 1 1.0
17 3 2 9 9 9 9.0 2 2 2 2.0
18 4 2 16 16 16 16.0 2 2 2 2.0
19 4 4 8 a 8 8.0 1 1 1 1.0
20 3 2 25 25 32 27.3 3 3 3 3.0
21 3 3 34 49 41 41.3 3 4 3 3.3
22 3 2 8 8 8 8.0 1 1 1 1.0

23 4 3 32 119 74 75.0 3 7 6 5.3
24 3 3 8 8 8 8.0 1 1 1 1.0
25 4 2 9 9 9 9.0 2 2 2 2.0
26 4 2 16 16 16 16.0 2 2 2 2.0
27 4 2 34 58 18 36.7 4 5 3 4.0

28 4 3 94 40 56 63.3 6 3 4 4.3
29 4 3 - - - - - - -

30 3 2 - - I - - -

Total 589 710 800 699.7 62 67 65 64.7

Solved Problems 26 26 26 26.0 26 26 26 26.0

Average 22.65 27.31 30.77 26.91 2.38 2.58 2.50 2.49

Table A.3: Performance of M3 over 30 training problems in the blocks-world do-
main.
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Method M4 _
Number Block GoXh WI Trh 2 Tria 3 Averw ' 'I Tha 2 Tha, A=

1 4 3.. ..
2 4 3 16 16 16 16.0 2 2 2 2.0
3 4 4 . .. ..
4 3 3 25 29 31 28.3 3 3 3 3.0
5 4 3 8 8 8 8.0 1 1 1 1.0
6 4 2 . .. ..
7 3 2 .. ..
a 3 2 8 a 8 8.0 1 1 1 1.0
9 3 3 . ..

10 4 4 8 8 8 8.0 1 1 1 1.0
11 4 4 . .. ..
12 4 2 .. ..
13 3 3 30 29 30 29.7 3 3 3 3.0
14 4 3 3 3 3 3.0 0 0 0 0.0
15 3 3 17 17 17 17.0 2 2 2 2.0
16 3 2 8 8 8 8.0 1 1 1 1.0
17 3 2 18 16 18 17.3 2 2 2 2.0
18 4 2 16 16 16 16.0 2 2 2 2.0
19 4 4 8 a 8 8.0 1 1 1 1.0
20 3 2 - -
21 3 3 .. . ..
22 3 2 8 8 8 8.0 1 1 1 1.0
23 4 3 - -
24 3 3 8 8 8 8.0 1 1 1 1.0
25 4 2 16 18 18 17.3 2 2 2 2.0
26 4 3 16 16 16 16.0 2 2 2 2.0
27 4 2 - -.

28 4 3 - - -
29 4 3 - - -

30 3 2 .. ..
TOWa 213 216 221 216.71 25 25 25 2:.0

Solved Problems 16 16 16 16.0 16 16 16 16.0

Averae 13.31 13.50 13.81 13.54 1.56 1.56 1.56 1.56

Table A.4: Performance of M4 over 30 training problems in the blocks-world do-
main.
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Method Ms
Problems IDedaons Plan IN

Number Blodto Gods Trial I1 Tral 2 Trial 3 Average Trial 1 Trial 2 Ti Av A

1 4 3 58 68 188 104.7 7 9 26 14.0
2 4 3 16 16 16 16.0 2 2 2 2.0
3 4 4 27 29 18 24.7 4 4 3 3.7
4 3 3 24 32 24 26.7 3 3 3 3.0
5 4 3 6 a 8 8.0 1 1 1 1.0
6 4 2 44 34 44 40.7 6 4 6 5.3
7 3 2 26 25 25 25.3 3 3 3 3.0
8 3 2 8 8 a 8.0 1 1 1 1.0
9 3 3 20 20 18 19.3 4 4 3 3.7

10 4 4 8 8 8 8.0 1 1 1 1.0
11 4 4 25 34 35 31.3 3 4 4 3.7
12 4 2 25 25 36 28.7 3 3 5 3.7
13 3 3 33 49 32 38.0 3 12 7 7.3
14 4 3 3 3 3 3.0 0 0 0 0.0
is 3 3 16 26 26 22.7 2 2 2 2.0
16 3 2 8 8 8 8.0 1 1 1 1.0
17 3 2 25 27 16 22.7 7 8 2 5.7

* 18 4 2 16 16 16 16.0 2 2 2 2.0
19 4 4 8 8 8 8.0 1 1 1 1.0
20 3 2 25 26 26 25.7 3 3 3 3.0
21 3 3 25 27 25 25.7 3 3 3 3.0
22 3 2 8 8 8 8.0 1 1 1 1.0
23 4 3 64 52 34 50.0 9 6 4 6.3
24 3 3 8 8 8 8.0 1 1 1 1.0
25 4 2 16 16 28 20.0 2 2 4 2.7

* 26 4 2 16 16 16 16.0 2 2 2 2.0
27 4 2 36 36 28 33.3 5 5 4 4.7
28 4 3 33 44 25 34.0 3 4 3 3.3
29 4 3 54 3S so 46.3 7 5 6 6.0
30 3 2 18 20 18 18.7 3 4 3 3.3

"Total 701 732 803 745.3 93 101 107 100.31
Solved Problems 30 30 30 30.0 30 30 30 30.0

Average 23.37 24.40 26.77 24.847 3.10 3.37 3.57 3.34

Table A.5: Performance of M5 over 30 training problems in the blocks-world do-
main.
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MethO Me

NEMlbr Tr"ial I TrialI Trial3 Averag Tr-ial 1 '1a 2 Trial 3 Ava
1 4 3 MV 240 436 351.7 13 14 11 12.7
2 4 3 16 16 16 16.0 2 2 2 2.0
3 4 4 29 is 34 27.0 4 3 4 3.7
4 3 3 32 40 40 37.3 3 4 4 3.7
5 4 3 a a a 8.0 1 1 1 1.0
6 4 2 154 160 48 120.7 7 14 4 8.3
7 3 2 34 34 33 33.7 3 3 3 3.0
a 3 2 8 a 8 8.0 1 1 1 1.0
9 3 3 20 20 20 20.0 4 4 4 4.0

10 4 4 8 8 8 a.O 1 i 1 1.0
it 4 4 32 80 32 48.0 3 5 3 3.7
12 4 2 40 32 48 40.0 3 3 4 3.3
13 3 3 56 65 40 53.7 a 12 4 ILO
14 4 3 3 3 3 3.0 0 0 0 G0
15 3 3 26 24 24 24.7 2 2 2 2.0
16 3 2 a a a 8.0 1 1 1 1.
17 3 2 21 16 16 17.7 5 2 2 3.0
is 4 2 16 16 16 16.0 2 2 2 2.0
19 4 4 8 a a 6.0 1 1 1 1.0
20 3 2 32 33 33 32.7 3 3 3 3.0
21 3 3 33 50 33 38.7 3 4 3 3.3
22 3 2 S 8 a 6.0 1 1 1 1.0
23 4 3 32 89 32 51.0 3 6 3 4.0
24 3 3 S a S 8.0 1 1 1 1.0
25 4 2 16 16 26 19.3 2 2 4 2.7
26 4 2 16 16 16 16.0 2 2 2 2.0
27 4 2 76 28 26 43.3 8 4 4 5.3
28 4 3 40 40 48 42.7 3 3 4 3.3
29 4 3 82 147 74 101.0 6 11 6 7.7
30 3 2 1is 20 is 18.7 3 4 3 3.3

TO W. 12 59 12 9 1168 12 2.71 99 116 8 10.01Solved Problem 30 30 30 30.0 30 30 30 30.0

Average 41.97 41.97 38.93 40.961 3.30 3.87 2.93 3.371

Table A.6: Performance of M6 over 30 training problems in the blocks-world do-
main.

A.2 Performance over 100 Testing Problems

The entries in the tables are defined as follows:

N: Problem number D: Number of decisions

B: Number of blocks L: Plan length

G: Number of goal conjuncts C: CPU time (sec.)

SP: Solved problems.
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Pbm II All M2 M3 M4 Ats
N B G D L C I VL" C D L CI D L CI D L C D L C
1 4 3 49 4 1.74 64 5 2.93 - - 49 4 1.69 64 5 2.90
2 3 3 9 2 0.14 9 2 0.14 9 2 0.12 18 2 0.37 16 2 0.28 16 2 0.28
3 4 2 -- - 26 3 0.78 33 3 1.01 - - 26 3 01 33 3 1.07
4 4 4 9 2 0.25 9 2 0.25 9 2 0.25 16 2 0.42 16 2 0.41 16 2 0.43
5 4 3 10 3 0.29 46 3 2.48 26 4 0.4 24 3 0.66 4 3 0.64 34 3 0.65
6 44 9 2 0.25 9 2 0.25 9 2 0.25 18 2 0.56 16 2 0.43 16 2 0.43
7 3 2 -- - 44 4 1.08 34 4 0.78 - - 30 5 0.4 45 5 1.07
8 4 2 8 1 0.13 8 1 0.13 8 1 0.13 8 1 0.13 6 1 0.14 8 1 0.13
9 44 - - 294 6 31.77 59 5 2.64 - - 3 8 2.74 91 6 4.76

10 33 6 1 0.11 6 1 0.10 6 1 0.10 6 1 0.10 a 1 0.11 6 1 0.11
11 4 3 9 2 0.22 9 2 0.22 9 2 0.21 16 2 0.53 26 4 0.81 16 2 0.38
12 4 2 9 2 0.21 9 2 0.20 9 2 0.20 18 2 0.4 37 6 1.29 16 2 0.34
13 3 2 -- - 3 0.54 32 3 0.75 -- 26 3 0.56 39 3 1.06
14 3 2 9 2 0.13 9 2 0.13 9 2 0.13 16 2 0.34 21 5 0.46 16 2 0.26
15 3 2 9 2 0.13 9 2 0.12 9 2 0.12 18 2 0.34 16 2 0.26 16 2 0.26
16 44 -- - 26 4 0.91 49 5 2.23 -- - 33 4 1.12 464 17 108.50
17 4 2 - - 34 4 1.03 48 4 1.53 -. - 25 3 0.67 118 9 5.89
18 3 2 6 1 0.09 6 1 0.10 6 1 0.10 6 1 0.10 6 1 0.10 8 1 0.09
19 3 2 8 1 0.09 6 1 0.10 8 1 0.10 6 1 0.09 6 1 0.10 6 1 0.10
2 4 3 - - 43 5 1.50 0 5 1.80 -- - 53 7 2.12 80 6 3.47
21 3 3 3 0 0.04 3 0 0.03 3 0 0.03 3 0 0.04 3 0 0.04 3 0 0.04
22 4 3 -- - 25 3 0.72 34 4 1.11 -- - 25 3 0.71 57 5 2.11
23 4 3 10 3 0.29 24 3 0.67 32 3 0.971 0 3 0.28 31 3 0.99 56 5 2.28
24 4 3 -- - 59 4 3.56 57 4 2.46 -- - 54 7 2.05 113 7 7.00
25 44 -- - 32 4 1.21 63 4 2.49 - - - l 6 2.85 73 5 2.99
26 33 8 1 0.10 8 1 0.10 6 1 0.10 6 1 0.10 8 1 0.10 8 1 0.11
27 4 3 10 3 0.30 25 3 0.75 40 3 1.56 10 3 0.28 32 3 0.96 56 5 1.67
28 33 6 1 0.11 6 1 0.10 8 1 0.11 8 1 0.11 6 1 0.10 6 1 0.11
29 4 3 10 3 0.29 35 4 1.23 48 4 1.63 10 3 0.28 36 4 1.15 48 4 1.70
30 3 2 -. - 17 2 0.28 17 2 0.28 - - - 1 2 0.28 17 2 0.27
31 4 3 9 2 0.22 9 2 0.22 9 2 0.22 16 2 0.38 16 2 0.38 16 2 0.37
32 4 4 -- - 42 4 1.55 66 5 2.93 -- - 34 4 1.24 89 7 3.95
33 33 8 1 0.11 8 1 0.11 6 1 0.11 8 1 0.11 8 1 0.11 8 1 0.10
34 3 3 9 2 0.13 9 2 0.14 9 2 0.13 16 2 0.27 16 2 0.28 16 2 0.28
35 4 3 -- - 26 4 0.79 42 5 2.18 -- - 206 25 16.20 179 15 13.19
36 4 2 6 1 0.15 8 1 0.14 8 1 0.14 8 1 0.14 6 1 0.14 8 1 0.14
37 33 6 1 0.11 8 1 0.10 8 1 0.11 6 1 0.11 8 1 0.10 8 1 0.10
38 4 2 - - 64 6 2.38 40 4 1.33 .- 53 7 1.94 119 10 5.00
39 3 2 8 1 0.10 6 1 0.10 8 1 0.09 8 1 0.10 8 1 0.09 8 1 0.09
40 3 2 3 0 0.03 3 0 0.03 3 0 0.04 3 0 0.04 3 0 0.04 3 0 0.04
41 3 2 -- - 19 2 0.35 17 2 0.28 -- - 17 2 0.29 17 2 0.27
42 3 2 -- - 21 3 0.50 21 3 0.47 -- - 27 4 0.58 27 4 0.58
43 4 3 8 1 0.15 8 1 0.13 8 1 0.14 8 1 0.13 8 1 0.14 8 1 0.14
44 4 3 10 3 0.27 25 3 0.71 58 3 2.05 10 3 0.26 25 3 0.72 24 3 0.63
45 4 4 16 2 0.43 16 2 0.44 16 2 0.44 16 2 0.43 16 2 0.43 16 2 0.43
46 4 4 9 2 0.23 16 2 0.40 25 3 0.76 9 2 0.23 16 2 0.40 16 2 0.40
47 3 2 -- - 17 2 0.29 17 2 0.28 - - 17 2 0.29 17 2 0.28
48 33 6 1 0.10 1 0.10 8 1 0.10 8 1 0.10 8 1 0.11 8 1 0.10
49 4 4 11 4 0.41 18 4 0.61 34 5 1.31 42 4 1.86 119 13 6.26 374 10 43.41
50 3 3 10 3 0.17 27 3 0.64 25 3 o.S7 19 3 0.39 32 7 0.85 40 4 1.07

Table A.7: Performance of single-method planners over 100 testing problems in the
blocks-world domain.
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M2 M4 MAA
NB GL D L C DL C DL C D
514 3 10 30.= 39 3 1.0 64 5 2.56 10 3 0.2 34 4 1.12 48 4 .65
523 3 6 1 0.10 8 1 0.10 6 1 0.11 a 1 0.11 8 1 0.10 6 1 0.10
33 2 0 2 0.13 9 2 0.12 9 2 0.13 16 2 0.26 21 5 0.46 16 2 0.26

5 4 3 10 3 0.2 24 3 0.66 24 3 0.67 10 3 0.26 50 6 1.84 64 S 2.66
554 4 11 40.3 49 4 1.63 41 5 1.52 1 4 0.39 63 2.23 87 5 4.31
63 2 6 1 0.10 a 1 0.10 a 1 0.10 6 1 0.10 a 1 0.00 a 1 0.O9

574 4 9 2 0.24 16 2 0. 16 2 0.42 9 2 0.22 16 2 0. 32 3 1.01
583 3 9 2 0.13 26 3 0.59 40 3 1.06 9 2 0.13 26 3 0.5 40 3 1.03
94 4 - 52 5 2.10 48 5 1.7 82 10 3.8 67 3.11

603 2 3 0 0.04 3 0 0.03 3 0 0.03 3 0 0.04 3 0 0.03 3 0 0.04
613 3 9 2 0.15 24 2 0.52 16 2 0.29 9 2 0.14 32 7 OM 16 2 0.26
623 2--- - - 18 3 0.32 - 36 9 1.00 18 22 6.10
633 2 9 2 0.14 9 2 0.13 9 2 0.12 16 2 0.2 23 6 0.55 23 6 0.55
643 3 9 2 0.13 16 2 0. 16 2 0.28 9 2 0.12 26 2 0.5 16 2 0.27
653 2 9 2 0.12 16 2 0.26 16 2 0.26 9 2 0.12 16 2 0.2 16 2 0.25
664 2 8 1 0.14 8 1 0.14 8 1 0.14 8 1 0.15 8 1 0.14 8 1 0.14
673 3 9 2 0.14 16 2 0.28 24 2 0.1 9 2 0.13 26 2 0.63 24 2 0.49
664 2 3 0 0.04 3 0 0.04 3 0 0.04 3 0 0.04 3 0 0.04 3 0 0.03
694 3 - 46 4 1.86 33 4 1.00 - 89 12 4.15 207 26 21.14
703 2- - 18 3 0.33 20 4 0.39
713 2 6 10.10 a 1 0.10 8 10.10 8 1 0.09 8 1 0.09 8 1 0.09
723 3 8 1 0.10 6 1 0.11 6 1 0.10 a 1 0.10 8 1 0.10 a 1 0.10
734 2 8 1 0.14 8 1 0.14 8 1 0.14 8 1 0.14 8 1 0.14 8 1 0.14
744 9 2 0.20 16 2 0.37 31 3 1.10 9 2 0.22 98 13 4.67 16 2 0.36
7532 - 26 4 0.61 64 5 1.67 - 2 4 0.59 65 5 1.81
763 2 9 2 0.13 9 2 0.12 9 2 0.13 18 2 0.34 21 5 0.46 23 6 0.56
77"4 3 - - "- -36 5 1.30 119 12 6.69
784 2 - 17 2 0.38 41 3 1.47./ 26 3 0.73 17 2 0.36
794 2 - 25 30. 41 41.36 25 3 0.67 25 3 0.803 2 3 00.04 3 00.04 3 00.03 3 00.03 3 0 0.03 3 0 0.04
813 3 10 3 0.17 17 3 0.33 17 3 0.33 17 3 0.31 32 7 O.8 45 7 1.35
823 3 9 2 0.13 26 2 0.9 25 3 0.56 9 2 0.13 29 2 0.66 16 2 0.2
3 3 9 2 0.14 9 2 0.13 9 2 0.13 16 2 0.28 25 7 0.68 29 9 0.93

843 3 - -- 20 3 0.40 20 3 0.4165 3 10 3 0.17 17 3 0.32 17 3 0.33 26 3 0.55 42 9 1.20 24 3 0.1
63 2 8 1 0.10 8 10.09 8 10.10 8 10.10 8 1 0.09 8 1 0.10

874 2 8 1 0.14 8 1 0.14 8 1 0.14 8 1 0.14 8 1 0.14 8 1 0.14
84 2 - 26 3 0.71 58 5 2.03 - - - 26 3 0.71 41 3 1.19
893 2 6 1 0.10 a 1 0.09 8 1 0.09 8 1 0.11 8 1 0.10 8 1 0.09
904 2 - - 27 4 0.89 57 5 2.11 - - - 96 12 4.68 97 7 4.87
913 2- ----- - - - - -- 18 3 0.32 20 4 0.39924 4 11 4 0.41 47 4 2.79 26 4 0.93 53 4 2.75 66 8 2.86 292 22 36.63
934 2 - - - 25 3 0.68 40 3 1.36 - - - 69 7 2.51 25 3 0.67
944 2 S 1 0.14 8 1 0.14 8 1 0.14 8 1 0.14 8 1 0.15 8 1 0.13
954 4 10 3 0.31 10 3 0.31 10 3 0.32 24 3 0.73 45 6 1.70 316 13 33.-3
963 2 - . - 19 2 0.35 19 2 0.35 - - - 17 2 0.27 19 2 0.35
973 3 9 2 0.14 24 2 0.51 25 3 0.56 9 2 0.13 29 2 0.67 24 2 0.50
983 3 10 3 0.16 41 3 1.32 34 3 0.79 10 3 0.16 24 3 0.51 32 3 0:.7
993 3 10 3 0.17 27 3 0.64 17 3 0.33 17 3 0.32 24 3 0.52 33 8 0.96

1004 4 10 3 0.33 33 3 1.eJ 33 4 1.18 17 3 0.49 50 6 1.96 50 6 2.01[ o~ 1 587 12415.361 2154 22391.51J 2266 2482.7 839 12423*901 2922 382104.111 4793 414361.5
SP 6868 68_ 95 95 95 96 96 96 6868 68 100 100 100 100100 100

Aver ge 11 S.631.82 0.23 22.672.35 0.961 23.602.54 0.861 12.341.82 0.351 29.223.82 1.04 47.934.14 3.62

Table A.8: Performance of single-method planners over 100 testing problems in the
blocks-world domain (continued).
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N Bo G . C 1 D L C I D L
1 4 3 5 2.16 83 8 3.87 52 5 1.83 54 4 1.96 525 1.80
2 3 3 14 2 0.23 14 2 0.23 14 2 0.23 14 2 0.22 21 2 0.47
3 4 2 38 4 1.3 39 3 1.15 36 4 1.06 31 3 1.00 34 3 0.92
4 4 4 14 2 0.36 14 2 0.36 14 2 0.36 14 2 0.36 23 2 0.69
5 4 3 15 3 0.41 15 3 0.39 15 30.36 51 3 2.55 31 3 0.97
6 4 4 14 2 0.36 14 2 0.37 14 2 0.36 14 2 0.36 21 2 0.69
7 3 2 37 4 0.91 41 5 0.92 35 4 0.71 49 4 1.23 36 5 0.76
8 4 2 13 1 0.22 13 1 0.22 13 1 0.22 13 1 0.21 13 1 0.22
9 4 4 72 5 3.10 80 8 3.77 96 8 4.17 299 6 32.89 75 8 3.61

10 3 3 13 1 0.20 13 1 0.19 13 1 0.19 13 1 0.19 13 1 0.19
11 4 3 14 2 0.32 14 2 0.33 14 2 0.33 14 2 0.32 23 2 0.63
12 4 2 14 2 0.30 14 2 0.30 14 2 0.28 14 2 0.29 21 2 0.53
13 3 2 49 3 1.48 39 3 0.88 35 3 0.67 32 3 0.72 35 3 0.68
14 3 2 14 2 0.22 14 2 0.21 14 2 0.21 14 2 0.20 21 2 0.42
15 3 2 14 2 0.21 14 2 0.22 14 2 0.21 14 2 0.20 23 2 0.42
16 4 4 128 5 8.14 128 12 6.20 65 8 2.62 31 4 1.21 220 15 13.70
17 4 2 77 3 3.22 47 4 1.36 43 4 1.29 39 4 1.28 41 3 1.14
18 3 2 13 1 0.17 13 1 0.18 13 1 0.17 13 1 0.18 13 1 0.17
19 3 2 13 1 0.18 13 1 0.19 13 1 0.18 13 1 0.17 13 1 0.18
20 4 3 44 4 1.55 65 7 2.44 61 7 2.26 48 5 1.63 41 3 1.22
21 3 3 3 0 0.04 3 0 0.04 3 0 0.04 3 00 .03 3 0 0.04
22 4 3 62 6 2.47 77 9 3.0 52 6 1.92 30 3 0.99 33 3 0.91
23 4 3 15 3 0.41 15 3 0.40 15 3 0.38 29 3 0.92 15 3 0.39
24 4 3 46 5 1.75 60 7 2.20 62 7 2.24 64 4 3.89 61 7 2.27
25 4 4 74 6 3.37 47 4 1.67 67 6 2.62 37 4 1.51 42 4 1.44
26 3 3 13 1 0.19 13 1 0.19 13 1 0.18 13 1 0.19 13 1 0.19
27 4 3 15 3 0.40 15 3 0.41 15 3 0.39 30 3 1.00 15 3 0.40
28 3 3 13 1 0.19 13 1 0.20 13 1 0.19 13 1 0.19 13 1 0.19
29 4 3 15 3 0.40 15 3 0.41 15 3 0.41 40 4 1.53 15 3 0.39
30 3 2 27 2 0.59 30 2 0.57 25 2 0.46 22 2 0.45 25 2 0.44
31 4 3 14 2 0.34 14 2 0.34 14 2 0.33 14 2 0.34 21 2 0.59
32 4 4 42 4 1.73 61 6 2.28 63 7 2.51 47 4 1.86 54 6 1.92
33 3 3 13 1 0.20 13 1 0.20 13 1 0.20 13 1 0.20 13 1 0.19
34 3 3 14 2 0.23 14 2 0.23 14 2 0.23 14 2 0.23 23 2 0.45
35 4 3 44 4 1.58 57 4 1.95 116 15 5.45 31 4 1.07 155 17 10.06
36 4 2 13 1 0.27 13 1 0.27 13 1 0.26 13 1 0.26 13 1 0.27
37 3 3 13 1 0.20 13 1 0.20 13 1 0.19 13 1 0.19 13 1 0.19
38 4 2 99 8 4.24 67 8 2.35 61 7 2.14 69 6 2.66 74 9 2.82
39 3 2 13 1 0.18 13 1 0.17 13 1 0.17 13 1 0.17 13 1 0.17
40 3 2 3 00 .03 3 0 0.03 3 0 0.03 3 0 0.03 3 0 0.03
41 3 2 27 2 0.59 30 2 0.57 27 2 0.50 24 2 0.43 25 2 0.43
42 3 2 28 3 0.66 41 4 0.93 35 4 0.75 26 3 0.59 28 4 0.56
43 4 3 13 1 0.23 13 1 0.23 13 1 0.23 13 1 0.23 13 1 0.23
44 4 3 15 3 0.40 15 3 0.39 15 3 0.37 30 3 0.97 15 3 0.37
45 4 4 21 2 0.70 21 2 0.71 21 2 0.70 21 2 0.70 21 2 0.69
46 4 4 14 2 0.34 14 2 0.34 14 2 0.33 21 2 0.66 14 2 0.33
47 3 2 29 3 0.68 32 3 0.64 27 3 0.50 22 2 0.46 25 2 0.43
48 3 3 13 1 0.20 13 1 0.20 13 1 0.19 13 1 0.19 13 1 0.19
49 4 4 16 4 0.54 16 4 0.54 16 4 0.54 23 4 0.91 49 4 2.29
50 3 3 15 3 0.28 15 3 0.27 15 3 0.27 32 3 0.84 22 3 0.51

Table A.9: Performance of coarse-grained multi-method planners over 100 testing
problems in the blocks-world domain.
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SNB GU D L C D L C1 D L C1 D L C1 D L C

51 4 3 15 3 0.40, 15 3 0.40 16 3 0.39 44 3 1.79 15 3 0.39
2 3 3 13 1 0.19 13 1 0.20 13 1 0.18 13 1 0.19 13 1 0.19

5 3 2 14 2 0.21 14 2 0.22 14 2 0.22 14 2 0.21 23 2 0.43
4 4 3 15 ! 0.4 1 15 3 0.40 153 0.39 29 3 0.92 16 3 0.38

55 4 4 16 4 0.50 16 4 0.51 16 4 0.49 5 4 2.16 16 4 0.48
56 3 2 13 1 0.18 13 1 0.18 13 1 0.18 13 1 0.17 13 1 0.17
57 4 4 14 2 0.35 14 2 0.34 14 2 0.34 21 2 0.65 14 2 0.33

6 3 3 14 2 0.23 14 2 0.23 14 2 0.23 31 3 0.80 14 2 0.22
59 44 118 6 616 49 5 1.78 9 6 2.22 57 5 2.41 61 7 2.3
60 3 2 3 0 0.03 3 0 0.03 3 0 0.04 3 0 0.03 3 0 0.03
61 3 3 14 2 0.23 14 2 0.23 14 2 0.22 29 2 0.72 14 2 0.22
62 3 2 61 a 1.6 50 9 1.28 43 9 1.07 55 8 1.49 41 7 0.96
63 3 2 14 2 0.21 14 2 0.21 14 2 0.21 14 2 0.21 21 2 0.43
64 3 3 14 2 0.22 14 2 0.22 14 2 0.22 21 2 0.46 14 2 0.21
65 3 2 14 2 0.21 14 2 0.22 14 2 0.21 29 2 0.66 14 2 0.20
66 4 2 13 1 0.24 13 1 0.24 13 1 0.24 13 1 0.24 13 1 0.23
67 3 3 14 2 0.22 14 2 0.22 14 2 0.22 21 2 0.45 14 2 0.22
68 4 2 3 0 0.03 3 0 0.03 3 0 0.04 3 0 0.05 3 0 0.04
69 4 3 57 4 3.73 170 1210.86 211 17 1.33 31 4 1.09 106 14 4.63
70 3 2 32 3 0.68 31 3 0.61 26 3 0.48 27 3 0.53 26 3 0.46
71 3 2 13 1 0.18 13 1 0.18 13 1 0.18 13 1 0.17 13 1 0.17
72 3 3 13 1 0.20 13 1 0.19 13 1 0.19 13 1 0.19 13 1 0.19
73 4 2 13 1 0.24 13 1 0.24 13 1 0.24 13 1 0.23 13 1 0.23
74 4 3 14 2 0.30 14 2 0.31 14 2 0.30 35 2 1.25 14 2 0.30
75 3 2 38 4 0.9 38 3 0.80 35 3 0.68 33 4 0.79 33 3 0.65
76 3 2 14 2 0.22 14 2 0.21 14 2 0.21 14 2 0.22 21 2 0.42
77 4 3 107 4 5.24 51 5 1.82 43 4 1.53 145 10 7.21 77 8 3.13
78 4 2 27 2 0.74 41 4 1.21 36 4 1.04 31 3 0.97 25 2 0.54
79 4 2 45 4 1.53 40 3 1.16 43 4 1.25 50 6 2.03 51 4 1.74
80 3 2 3 0 0.03 3 0 0.04 3 0 0.03 3 0 0.04 3 0 0.03
81 33 15 3 0.27 15 3 0.27 15 3 0.27 22 3 0.52 24 3 0.49
82 3 3 14 2 0.23 14 2 0.23 14 2 0.22 21 2 0.46 14 2 0.22
83 3 3 14 2 0.23 14 2 0.24 14 2 0.22 14 2 0.23 23 2 0.46
84 3 3 33 3 0.71 31 3 0.6 26 30.50 30 3 0.62 26 30.0
85 3 3 15 3 0.28 15 3 0.27 15 3 0.26 36 3 0.95 31 3 0.76
86 3 2 13 1 0.19 13 1 0.18 13 1 0.18 13 1 0.18 13 1 0.18
87 4 2 13 1 0.27 13 1 0.27 13 1 0.27 13 1 0.26 13 1 0.26
68 4 2 38 3 1.17 41 3 1.11 69 6 225 50 4 1.74 34 3 0.89
89 3 2 13 1 0.18 13 1 0.17 13 1 0.17 13 1 0.17 13 1 0.17
90 4 2 37 4 1.35 108 13 4.56 66 10 2.56 41 5 1.60 43 4 1.37
91 3 2 34 4 0.74 31 3 0.62 26 3 0.47 27 3 0.53 26 3 0.47
92 4 4 16 4 0.56 16 4 0.54 16 4 0.53 23 4 0.89 44 4 1.85
93 4 2 80 7 3.41 40 3 1.14 34 3 0.90 49 5 1.75 60 5 2.11
94 4 2 13 1 0.23 13 1 0.23 13 1 0.22 13 1 0.22 13 1 0.22
95 4 4 15 3 0.46 15 3 0.45 15 3 0.45 15 3 0.44 29 3 1.03
96 3 2 27 2 0.59 32 2 0.64 27 2 0.49 24 2 0.43 27 2 0.49
97 3 3 14 2 0.23 14 2 0.23 14 2 0.22 21 2 0.47 14 2 0.22
98 3 3 15 3 0.26 15 3 0.26 15 3 0.26 32 3 0.77 15 3 0.26
99 3 3 15 3 0.27 15 3 0.27 IS 3 0.26 22 3 0.52 24 3 0.49

100 44 15 3 0.46 15 3 0.45 15 3 0.45 63 3 3.75 24 3 0.78

Tot.F I 2613 258 86.321 2679 294 83.061 2604 303 82.171 2934 2.58 115.891 2838 293 92.041SP 100 100 1W 1W 100 100 100 100 100 00 100 100 )0 100 100

Average 11 26.13 2.58 0.86 26.79 2.94 0.83 26.04 3.03 0.821 29.34 2.58 1.16[ 28.38 2.93 0.92

Table A.10: Performance of coarse-grained multi-method planners over 100 testing
problems in the blocks-world domain (continued).
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N B G 11 D L C ID L C ID L C ID L C ID L C

1 4 3 93 7 4.75 S7 6 3.95 91 7 4.33 69 5 330 91 7 4.35
2 3 3 14 2 0.23 14 2 0.23 14 2 0.23 14 2 0.23 23 2 0.45
3 4 2 43 3 1.66 46 3 1.42 41 3 1.25 38 31.38 33 3 0.88
4 4 4 14 2 0.36 14 2 0.36 14 2 0.3 14 2 0.36 21 2 0.67
5 4 3 15 3 0.40 15 30.39 15 3 0.39 31 4 1.11 33 3 1.00
6 4 4 14 2 0.38 14 2 0.37 14 2 0.35 14 2 0.36 23 2 0.69
7 3 2 47 4 1.24 68 5 1.37 43 5 0.9 39 4 0.96 44 6 1.13
8 4 2 13 1 0.24 13 1 0.23 13 1 0.22 13 1 0.21 13 1 0.22
9 4 4 68 5 3.66 136 9 7.53 90 7 4.15 64 3.02 207 12 18.71

10 3 3 13 1 0.20 13 1 0.20 13 1 0.19 13 1 0.18 13 1 0.18
11 4 3 14 2 0.33 14 2 0.33 14 2 0.32 14 2 0.33 21 2 0.60
12 4 2 14 2 0.29 14 2 0.30 14 2 0.29 14 2 0.2 21 2 0.54
13 3 2 50 3 1.32 63 4 1.51 41 3 1.01 37 3 0.94 41 3 1.06
14 3 2 14 2 0.22 14 2 0.22 14 2 0.21 14 2 0.21 21 2 0.42
15 3 2 14 2 0.22 14 2 0.21 14 2 0.22 14 2 0.21 23 2 0.43
16 4 4 111 8 6.86 77 5 3.2 72 5 3.08 54 5 2.62 64 5 2.40
17 4 2 42 3 1.29 130 8 4.76 65 5 2.11 53 4 1.81 193 12 10.74
18 3 2 13 1 0.18 13 1 0.18 13 1 0.17 13 1 0.17 13 1 0.18
19 3 2 13 1 0.20 13 1 0.19 13 1 0.18 13 1 0.18 13 1 0.18
20 4 3 67 5 2.60 106 9 5.07 72 5 2.53 55 5 2.14 40 3 1.18
21 3 3 3 0 0.03 3 0 0.03 3 0 0.04 3 0 0.03 3 0 0.04
22 4 3 51 4 1.92 71 6 2.55 64 4 2.36 39 4 1.40 128 8 6.50
23 4 3 15 3 0.40 15 3 0.40 15 3 0.39 37 3 1.25 15 3 0.38
24 4 3 104 6 5.10 180 12 13.95 166 12 10.00 62 4 2.80 108 8 5.40
25 4 4 76 5 3.62 63 4 2.41 106 7 5.19 68 4 2.89 68 6 2.99
26 3 3 13 1 0.19 13 1 0.19 13 1 0.19 13 1 0.18 13 1 0.18
27 4 3 15 3 0.40 15 3 0.40 15 3 0.39 45 3 1.90 15 3 0.38
26 3 3 13 1 0.20 13 1 0.20 13 1 0.19 13 1 0.19 13 1 0.18
29 4 3 15 3 0.40 15 3 0.40 15 3 0.39 53 4 1.95 15 3 0.39
30 3 2 27 2 0.568 30 2 0.56 25 2 0.43 22 2 0.45 25 2 0.43
31 4 3 14 2 0.32 14 2 0.33 14 2 0.34 14 2 0.33 23 2 0.63
32 4 4 75 5 3.19 101 6 4.28 88 6 4.23 71 5 3.38 48 4 1.63
33 3 3 13 1 0.19 13 1 0.19 13 1 0.19 13 1 0.18 13 1 0.19
34 3 3 14 2 0.23 14 2 0.23 14 2 0.22 14 2 0.23 23 2 0.45
35 4 3 52 5 2.30 170 12 10.35 170 13 11.43 47 5 2.54 67 5 2.32
36 4 2 13 1 0.26 13 1 0.27 13 1 0.26 13 1 0.26 13 1 0.27
37 3 3 13 1 0.19 13 1 0.20 13 1 0.19 13 1 0.19 13 1 0.19
38 4 2 51 4 1.97 84 6 3.40 127 6 6.01 45 4 1.60 118 9 5.99
39 3 2 13 1 0.18 13 1 0.18 13 1 0.17 13 1 0.17 13 1 0.17
40 3 2 3 0 0.04 3 0 0.03 3 0 0.04 3 0 0.03 3 0 0.04
41 3 2 29 2 0.58 30 2 0.56 27 2 0.50 22 2 0.45 25 2 0.41
42 3 2 28 3 0.66 33 4 0.71 27 4 0.52 26 3 0.58 28 4 0.55
43 4 3 13 1 0.24 13 1 0.23 13 1 0.23 13 1 0.24 13 1 0.23
44 4 3 15 3 0.38 15 3 0.37 15 3 0.37 63 3 2.36 15 3 0.37
45 4 4 21 2 0.70 21 2 0.69 21 2 0.72 21 2 0.71 21 2 0.68
46 4 4 14 2 0.34 14 2 0.34 14 2 0.34 30 3 1.08 14 2 0.33
47 3 2 29 3 0.66 32 3 0.63 27 3 0.50 22 2 0.45 27 3 0.50
48 3 3 13 1 0.19 13 1 0.19 13 1 0.19 13 1 0.19 13 1 0.19
49 4 4 16 4 0.54 16 4 0.54 16 4 0.54 39 5 1.68 43 4 1.73
5033 15 3 0.27 15 3 0.28 15 3 0.27 30 3 0.78 24 3 0.49

Table A. ll: Performance of coarse-grained multi-method planners over 100 testing
problems in the blocks-world domain (continued).
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51 4 3 15 3 0.40 15 3 0.39 15 3 0.39 69 6 2.98 15 3 0.39
52 3 3 13 1 0.19 13 1 0.19 13 1 0.19 13 1 0.16 13 1 0.18;
3 3 2 14 2 0.21 14 2 0.21 14 2 0.22 14 2 0.21 21 2 0.43

54 4 3 15 3 0.40 15 3 0.40 15 3 0.40 29 3 0.91 15 3 0.38
55 4 4 16 4 0.49 16 4 0.60 16 4 0.51 46 5 1.91 16 ( 0.49
6 3 2 13 1 0.18 13 1 0.18 13 1 0.17. 13 1 0.17 13 1 0.17

57 4 4 14 2 0.35 14 2 0.34 14 2 0.351 21 2 0.65 14 2 0.34
5 3 3 14 2 0.23 14 2 0.23 14 2 0.22 45 3 1.28 14 2 0.22
59 4 4 92 6 4.39 143 9 7.34 132 7 10.90 53 5 2.27 91 6 4.07
60 3 2 3 0 0.04 3 0 0.04 3 0 0.03 3 0 0.04 3 0 0.04
61 3 3 14 2 0.23 14 2 0.24 14 2 0.22 21 2 046 14 2 0.22
62 3 2 47 5 1.31 96 11 3.24 62 7 1.71 23 3 0.50 59 1.68
63 3 2 14 2 0.22 14 2 0.22 14 2 0.21 14 2 0.20 23 2 0.43
64 3 3 14 2 0.22 14 2 0.22 14 2 0.32 21 2 0.45 14 2 0.22
65 3 2 14 2 0.22 14 2 0.20 14 2 0.20 21 2 0.43 14 2 0.21
66 4 2 13 1 0.24 13 1 0.24 13 1 0.24 13 1 0.24 13 1 0.24
67 3 3 14 2 0.22 14 2 0.22 14 2 0.22 29 2 0.69 14 2 0.21
68 4 2 3 0 0.04 3 0 0.04 3 0 0.03 3 0 0.03 3 0 0.03
69 4 3 67 5 2.92 525 13 90.83 201 17 13.29 38 4 1.36 141 10 7.47
70 3 2 34 4 0.73 33 4 0.68 28 4 0.54 29 4 0.59 28 4 0.53
71 3 2 13 1 0.18 13 1 0.17 13 1 0.18 13 1 0.18 13 1 0.17
72 3 3 13 1 0.20 13 1 0.19 13 1 0.19 13 1 0.19 13 1 0.19
73 4 2 13 1 0.24 13 1 0.24 13 1 0.24 13 1 0.23 13 1 0.25
74 4 3 14 2 0.31 14 2 0.31 14 2 0.30 21 2 0.58 14 2 0.30
75 3 2 42 3 1.04 46 3 1.17 41 3 0.96 46 3 1.26 50 3 1.08
76 3 2 14 2 0.22 14 2 0.22 14 2 0.21 14 2 0.20 21 2 0.42
77 4 3 239 4 13.05 41 4 1.31 35 4 1.07 254 5 13.11 140 11 7.60
78 4 2 27 2 0.72 30 2 0.70 25 2 0.54 22 2 0.57 25 2 0.54
79 4 2 36 3 1.14 40 3 1.13 34 3 0.92 30 3 0.90 49 3 1.51
80 3 2 3 0 0.04 3 0 0.03 3 0 0.03 3 0 0.04 3 0 0.04
81 33 15 3 0.27 15 3 0.26 15 3 0.26 22 3 0.52 24 3 0.49
82 3 3 14 2 0.23 14 2 0.22 14 2 0.22 29 2 0.71 14 2 0.22
33 3 14 2 0.24 14 2 0.23 14 2 0.23 14 2 0.23 21 2 0.48

84 3 3 35 3 0.77 33 3 0.72 28 3 0.57 30 3 0.62 28 3 0.57
85 3 3 15 3 0.27 15 3 0.27 15 3 0.26 30 3 0.79 31 3 0.76
86 3 2 13 1 0.19 13 1 0.18 13 1 0.18 13 1 0.19 13 1 0.18
87 4 2 13 1 0.27 13 1 0.26 13 1 0.26 13 1 0.26 13 1 0.26
88 4 2 78 6 3.20 46 3 1.28 57 3 1.67 54 4 2.05 41 3 1.12
89 3 2 13 1 0.18 13 1 0.18 13 1 0.18 13 1 0.18 13 1 0.18
90 4 2 135 8 8.30 172 8 8.16 172 9 10.71 108 7 5.45 125 9 6.50
91 3 2 34 4 0.73 33 4 0.68 28 4 0.53 27 3 0.52 26 3 0.46
92 4 4 16 4 0.54 16 4 0.54 16 4 0.54 63 6 2.96 39 4 1.51
93 4 2 51 3 1.91 63 3 2.09 65 4 2.27 53 4 2.07 118 6 8.52
94 4 2 13 1 0.23 13 1 0.23 13 1 0.22 13 1 0.23 13 1 0.22
95 4 4 15 3 0.44 15 3 0.44 15 3 0.44 15 3 0.44 38 3 1.55
96 3 2 29 2 0.57 30 2 0.55 25 2 0.42 24 2 0.45 25 2 0.42
97 3 3 14 2 0.22 14 2 0.23 14 2 0.23 30 3 0.78 14 2 0.23
98 3 3 15 3 0.26 15 3 0.26 15 3 0.25 39 3 1.01 15 3 0.25
99 3 3 15 3 0.27 15 3 0.27 15 3 0.27 22 3 0.52 22 3 0.50

100 4 4 15 3 0.45 15 3 0.45 15 3 0.44 38 4 1.,54 24 3 0.78
STOW~lI 2891 259 102.811 3730 302206.58 3177 297 124.461 3067 257 104.82 3447 295135.391

SP 100 100 1001 100 100 100 100 100 1001 100 100 100 100 100 100

Average 1 28.91 2.59 1.03 37.30 3.02 2.071 31.77 2.97 1.24 30.67 2.57 1.051 34.47 2.95 1.35

Table A.12: Performance of coarse-grained multi-method planners over 100 testing
problems in the blocks-world domain (continued).
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IN B G D CIDLC
1 4 3 32 6 1.52 32 6 1.52 32 6 1.51 49 4 1.92 32 6 1.49
2 3 3 9 2 0.14 9 2 0.13 9 2 0.15 9 2 0.13 16 2 0.31
3 4 2 26 3 1.02 26 3 1.02 26 3 1.03 26 3 0.84 26 3 0.98
4 44 9 2 0.24 9 2 0.25 9 2 0.25 9 2 0.24 3 5 1.66
5 4 3 10 3 0.30 10 3 0.30 10 3 0.29 78 14 5.10 31 7 1.47
6 4 4 9 2 0.26 9 2 0.26 9 2 0.25 9 2 0.24 16 2 0.48
7 3 2 14 5 0.32 14 5 0.33 14 5 0.33 29 5 0.72 13 4 0.25
8 4 2 8 1 0.13 8 1 0.14 8 1 0.14 8 1 0.14 & 1 0.13
9 4 4 14 5 0.70 14 5 0.69 14 5 0.70 7 9 9 5.3321 5 0.93

10 33 8 1 0.11 8 1 0.11 8 1 0.11 8 1 0.10 5 1 0.11
11 4 3 9 2 0.22 9 2 0.23 9 2 0.23 9 2 0.22 26 4 1.00
12 4 2 9 2 0.20 9 2 0.20 9 2 0.20 9 2 0.19 22 2 0.82
13 3 2 11 3 0.20 11 3 0.20 11 3 0.20 25 3 0.56 11 3 0.20
14 3 2 9 2 0.13 9 2 0.12 9 2 0.12 9 2 0.13 16 2 0.29
15 3 2 9 2 0.12 9 2 0.14 9 2 0.13 9 2 0.13 16 2 0.30
16 4 4 19 4 0.83 19 4 0.82 19 4 0.83 77 9 4.36 33 8 1.75
17 4 2 18 3 0.60 18 3 0.60 18 3 0.60 25 3 0.75 26 7 1.34
18 3 2 8 1 0.10 8 1 0.09 8 1 0.10 8 1 0.10 8 1 0.10
19 3 2 8 1 0.10 8 1 0.10 8 1 0.09 8 1 0.10 8 1 0.10
20 4 3 20 4 0.81 20 4 0.81 20 4 0.80 53 7 2.68 18 3 0.64
21 3 3 3 0 0.04 3 0 0.04 3 0 0.04 3 0 0.04 3 0 0.04
22 4 3 41 8 2.18 41 8 2.18 41 8 2.17 34 4 1.23 43 6 2.39
23 4 3 10 3 0.29 10 3 0.30 10 3 0.30 42 5 1.68 10 3 0.29
24 4 3 20 4 0.81 20 4 0.82 20 4 0.81 47 7 2.03 34 8 1.73
25 4 4 39 14 3.0 39 14 3.51 38 14 3.48 42 4 1.76 14 5 0.68
26 3 3 8 1 0.13 8 1 0.10 8 1 0.09 8 1 0.10 8 1 0.10
27 4 3 10 3 0.31 10 3 0.29 10 3 0.30 24 3 0.74 10 3 0.29
28 3 3 8 1 0.10 8 1 0.11 8 1 0.10 8 1 0.10 8 1 0.10
29 4 3 10 3 0.30 10 3 0.30 10 3 0.29 33 4 1.21 10 3 0.29
30 3 2 17 2 0.35 17 2 0.35 17 2 0.35 17 2 0.32 17 2 0.34
31 4 3 9 2 0.23 9 2 0.22 9 2 0.22 9 2 0.22 35 5 1.51
32 4 4 33 11 2.04 16 6 0.93 16 6 0.92 42 5 1.78 14 5 0.68
33 33 8 1 0.11 8 1 0.11 8 1 0.11 8 1 0.11 8 1 0.11
34 3 3 9 2 0.14 9 2 0.14 9 2 0.14 9 2 0.13 16 2 0.31
35 4 3 19 4 0.79 30 11 1.93 13 5 0.70 21 5 0.93 45 8 2.29
36 4 2 8 1 0.15 8 1 0.14 8 1 0.15 8 1 0.14 8 1 0.15
37 3 3 8 1 0.11 8 1 0.12 8 1 0.10 8 1 0.11 8 1 0.10
38 4 2 43 13 3.03 41 8 2.48 41 8 2.03 37 6 1.56 39 11 2.12
39 3 2 8 1 0.11 8 1 0.09 8 1 0.10 8 1 0.09 8 1 0.10
40 3 2 3 0 0.03 3 0 0.04 3 0 0.03 3 0 0.04 3 0 0.04
41 3 2 10 2 0.16 10 2 0.16 10 2 0.17 19 2 0.38 10 2 0.16
42 3 2 20 4 0.49 12 4 0.26 20 4 0.48 20 4 0.45 12 4 0.24
43 4 3 8 1 0.15 8 1 0.15 8 1 0.14 8 1 0.14 8 1 0.15
44 4 3 10 3 0.28 10 3 0.32 10 3 0.28 32 3 1.03 10 3 0.28
45 4 4 16 2 0.48 16 2 0.48 16 2 0.48 16 2 0.47 16 2 0.47
46 44 92 0.24 9 2 0.24 9 2 0.23 16 2 0.44 9 2 0.23
47 3 2 17 2 0.35 19 3 0.42 17 2 0.34 17 2 0.31 17 2 0.35
48 3 3 8 1 0.11 8 1 0.11 8 1 0.10 8 1 0.11 8 1 0.10
49 4 4 11 4 0.43 11 4 0.43 11 4 0.44 239 23 28.31 35 6 1.62
50 3 3 10 3 0.17 10 3 0.17 10 3 0.18 17 3 0.37 22 6 0.59S

Table A.13: Performance of fine-grained multi-method planners over 100 testing
problems in the blocks-world.
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f_ _ MI-2-5 M... - M,. M2-SIN G] D L C1 D L CI D L C C [ C

514 3 10 3 0.30 10 3 0.31 10 3 0.30 36 4 1.31 10 3 0.29
5233 6 10.10 6 1 0.10 a 10.11 6 1 0.10 8 1 0.10

3 3 2 9 2 0.13 9 2 0.13 9 2 0.13 9 2 0.13 23 6 0.62
54 43 10 3 0.30 10 3 0.30 10 3 0.30 3 6 2.41 10 3 0.29
55 4 4 11 4 0.40 11 4 0.40 11 4 0.39 49 4 2.09 11 4 0.38
56 3 2 8 1 0.09 6 1 0.09 6 1 0.09 8 1 0.10 1 0.10
57 4 4 9 2 0.24 9 2 0.24 9 2 0.24 30 6 1.50 9 3 0.23

83 3 9 2 0.14 9 2 0.14 9 2 0.13 26 3 0.66 9 2 0.13
59 44 21 50.92 16 7 1.07 21 5 0.93 40 7 1.97 22 6 1.05
60 3 2 3 0 0.04 3 0 0.03 3 0 0.04 3 0 0.04 3 0 0.04
61 3 3 9 2 0.14 9 2 0.13 9 2 0.14 16 2 0.31 9 2 0.14
62 3 2 25 7 0.76 23 10 0.79 27 12 1.05 25 7 0.67 23 10 0.73
63 3 2 9 2 0.13 9 2 0.13 9 2 0.13 9 2 0.12 16 2 0.29
64 3 3 9 2 0.13 9 2 0.13 9 2 0.13 26 2 0.5 9 2 0.13
65 3 2 9 2 0.12 9 2 0.12 9 2 0.12 24 2 0.54 9 2 0.12
66 4 8 1 0.15 8 1 0.14 8 1 0.15 8 1 0.14 8 1 9.14
67 3 3 9 2 0.13 9 2 0.13 9 2 0.13 16 2 0.31 9 2 0.13
68 4 2 3 0 0.04 3 0 0.04 3 0 0.04 3 0 0.04 3 0 0.04
69 4 3 19 4 0.76 19 4 0.76 19 4 0.76 32 4 1.23 33 4 1.76
TO 3 2 13 4 0.29 13 4 0.29 13 4 0.29 11 3 0.20 18 3 0.38
71 3 2 a 1 0.10 10.10 8 1 0.10 8 1 0.09 8 1 0.10
723 3 6 1 0.10 6 1 0.10 6 1 0.10 6 1 0.10 6 1 0.11
73 4 2 8 1 0.14 8 1 0.15 8 1 0.14 8 1 0.14 8 1 0.14
74 4 3 9 2 0.20 9 2 0.21 9 2 0.21 16 2 0.40 9 2 0.20
75 3 2 11 3 0.19 11 3 0.20 11 3 0.20 27 3 0.58 14 4 0.29
76 3 2 9 2 0.13 9 2 0.13 9 2 0.14 9 2 0.12 16 2 0.29
77 4 3 12 4 0.51 12 4 0.51 21 5 0.90 60 5 2.91 28 5 1.18
78 4 2 172 0.50 17 2 0.49 117 2 0.49 17 2 0.42 17 2 0.48
79 4 2 27 4 0.97 27 4 0.99 18 3 0.56 42 4 1.57 18 3 0.57 0
80 3 2 3 0 0.03 3 0 0.03 3 0 0.04 3 0 0.04 3 0 0.04
81 3 3 10 3 0.18 10 3 0.17 10 3 0.17 17 3 0.36 17 30.35
82 3 3 9 2 0.14 9 2 0.14 9 2 0.13 16 2 0.31 9 2 0.14
83 3 3 9 2 0.14 9 2 0.14 9 2 0.13 9 2 0.14 16 2 0.32
64 3 3 15 5 0.34 11 3 0.22 17 6 0.43 17 6 0.38 11 3 0.21
85 3 3 10 3 0.7 10 3 0.17 10 3 0.17 3 9 1.22 33 6 0.95
86 3 6 a 1 0.09 6 1 0.10 8 1 0.10 8 1 0.09 8 1 0.09
87 4 2 8 1 0.14 8 1 0.15 8 1 0.15 8 1 0.14 6 1 0.15
68 4 2 45 16 3.32 14 4 0.57 35 11 1.97 39 3 1.40 12 3 0.41
89 3 2 8 1 0.09 8 1 0.10 8 1 0.10 8 1 0.10 8 1 0.10
90 4 2 46 5 2.50 133 61 63.29 36 5 1.61 33 4 1.36 146 67 70.66
91 3 2 13 4 0.29 13 4 0.29 13 4 0.29 11 3 0.20 20 4 0.47
92 4 4 11 4 0.43 11 4 0.42 11 4 0.44 18 4 0.68 4711 2.79
93 4 2 27 4 1.00 18 3 0.57 18 3 0.56 44 5 1.68 18 3 0.55
94 4 2 6 1 0.15 8 1 0.14 8 1 0.14 8 1 0.14 8 1 0.14
95 4 4 10 3 0.32 10 3 0.33 10 3 0.33 10 3 0.32 38 11 2.29
96 3 2 10 2 0.16 10 2 0.16 10 2 0.16 19 2 0.37 10 2 0.16
97 33 9 2 0.13 9 2 0.13 9 2 0.14 29 3 0.77 9 2 0.13
98 3 3 10 3 0.16 10 3 0.16 10 3 0.17 37 3 1.04 10 3 0.16
99 3 3 10 30.17 10 3 0.18 10 3 0.17 17 3 0.35 17 3 0.34

100 44 10 3 0.36 10 3 0.33 10 3 0.34 28 5 1.31 36 6 1.72[ TF 2f301 290 44.121 1325 3342101.1 1251 281 39.511 2380 316 103.501 1738 377 124.821SP 100 100 100 100 100 100 100 100 1001 100 100 100 100 100 100

( A age ][ 13.01 2.90 0.44 13.25 3.34 1.01 12.51 2.81 0.401 23.80 3.16 1.03 17.38 3.77 1.25

Table A.14: Performance of fine-grained multi-method planners over 100 testing
problems in the blocks-world (continued).
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Problem 11 Ms-8-, 1M-4,-6, I r_ MI-6 I M3-4

N B G D L CI D L C D L C I D L CI D

1 4 3 4T 7 2.42 47 7 2.43 47 7 2.42 36 5 2.84 47 7 2.42
2 3 3 9 2 0.14 9 2 0.13 9 2 0.13 9 2 0.13 16 2 0.31
3 4 2 25 3 0.87 25 3 0.87 25 3 0.86 33 3 1.11 25 3 0.86
4 4 4 9 2 0.24 9 2 0.24 9 2 0.24 9 2 0.25 16 2 0.45

S54 3 10 3 0.29 10 3 0.29 10 3 0.28 33 4 1.20 75 13 4.63
6 4 4 9 2 0.25 9 2 0.27 9 2 920.25 16 2 0.47
7 3 2 20 4 0.45 20 4 0.45 20 4 0.45 34 4 0O9 27 4 0.68
8 4 2 8 1 0.13 8 1 0.13 8 1 0.13 8 1 0.14 5 1 0.13
9 4 4 37 6 1.96 37 6 1.97 37 6 1.96 59 5 2.99 20 S 0.86

10 33 8 1 0.10 8 1 0.11 8 1 0.11 6 1 0.11 8 1 0.12
11 4 3 9 2 0.22 9 2 0.22 9 2 0.22 9 2 0.22 42 5 1.78
12 4 2 9 2 0.19 9 2 0.20 9 2 0.19 9 2 0.20 16 2 0.36

* 13 3 2 11 3 0.21 11 3 0.19 11 3 0.20 32 3 08 18 3 0.40
14 3 2 9 2 0.13 9 2 0.13 9 2 0.12 9 2 0.13 21 5 0.52
15 3 2 9 2 0.13 9 2 0.13 9 2 0.13 9 2 0.13 16 2 0.29
16 4 4 37 6 1.89 61 17 4.46 34 9 2.08 49 5 2.54 26 4 1.09
17 4 2 20 4 0.76 34 8 1.64 20 4 0.77 48 4 1.75 18 3 0.59
18 3 2 6 1 0.10 8 1 0.10 8 1 0.10 8 1 0.10 8 1 0.10
19 3 2 8 1 0.09 8 1 0.10 8 1 0.10 8 1 0.10 8 1 0.10
20 4 3 20 4 0.80 40 8 2.15 28 5 133 50 5 2.06 27 4 1.17
21 3 3 3 0 0.04 3 0 0.04 3 0 0.04 3 0 0.04 3 0 0.04
22 4 3 28 5 1.31 29 6 1.37 31 7 1.56 34 4 1.25 62 9 3.23
23 4 3 10 3 0.29 10 3 0.29 10 3 0.29 32 3 1.09 10 3 0.28
24 4 3 52 10 3.03 49 8 2.67 38 7 1.82 57 4 2.79 61 12 3.45
25 4 4 28 5 1.42 12 4 0.54 28 5 1.40 63 4 2.88 28 5 1.38
26 33 8 1 0.10 8 1 0.10 8 1 0.11 8 1 0.10 8 1 0.11
27 4 3 10 3 0.30 10 3 0.30 10 3 0.28 40 3 1.78 10 3 0.28

S28 33 8 1 0.10 8 1 0.11 8 1 0.11 8 1 0.10 8 1 0.11
29 4 3 10 3 0.29 10 3 0.30 10 3 0.30 48 4 1.89 10 3 0.29
30 3 2 17 2 0.33 17 2 0.33 17 2 0.33 17 2 0.31 17 2 0.33
31 4 3 9 2 0.22 9 2 0.22 9 2 0.22 9 2 0.23 52 7 2.33
32 4 4 28 5 1.29 20 4 0.85 12 4 0.53 66 5 3.37 29 6 1.51
33 33 8 1 0.10 8 1 0.11 8 1 0.11 8 1 0.10 8 1 0.10
34 3 3 9 2 0.14 9 2 0.14 9 2 0.13 9 2 0.13 16 2 0.32
35 4 3 19 4 0.76 21 10 1.51 21 9 1.8 21 5 0.93 51 11 2.71
3 4 2 8 1 0.14 8 1 0.14 8 1 0.14 8 1 0.14 8 1 0.14
37 3 8 1 0.10 8 1 0.10 8 1 0.10 8 1 0.11 8 1 0.10
38 4 2 27 4 1.09 32 7 1.49 27 4 1.14 57 5 2.47 82 12 4.87
39 3 2 8 1 0.10 8 1 0.09 8 1 0.09 8 1 0.10 8 1 0.09
40 3 2 3 0 0.03 3 0 0.03 3 0 0.03 3 0 0.03 3 0 0.04
41 3 2 10 2 0.16 10 2 0.15 10 2 0.16 17 2 0.30 10 2 0.15
42 3 2 20 4 0.47 12 4 0.26 18 3 0.37 18 3 0.36 12 4 0.24
43 4 3 8 1 0.14 8 1 0.14 8 1 0.14 8 1 0.14 8 1 0.14
44 4 3 10 3 0.27 10 3 0.28 10 3 0.28 58 3 2.34 10 3 0.27
45 4 4 16 2 0.48 16 2 0.47 16 2 0.48 16 2 0.48 16 2 0.47
46 4 4 9 2 0.23 9 2 0.23 9 2 0.23 16 2 0.43 9 2 0.23
47 3 2 1 20.34 19 3 0.42 19 3 0.40 19 3 0.37 19 3 0.41
48 33 8 1 0.10 8 1 0.10 8 1 0.11 8 1 0.10 8 1 0.11
49 4 4 11 4 0.41 11 4 0.42 11 4 0.42 18 4 0.66 38 4 1.69
50 3 3 10 3 0. 10 3 0.17 10 3 0.17 17 3 0.35 17 3 0.34

Table A.15: Performance of fine-grained multi-method planners over 100 testing
problems in the blocks-world (continued).
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r4 a o -- L C1 D L C1 D L. C1 L c1 D L.

81 4 3 10 3 0.30 10 3 0.29 10 3 0.29 56 6 2.W0 10 3 0.28
62 3 3 a 1 0.10 a 1 0.11 a 1 0.11 a 1 0.11 a 1 0.11
63 3 2 9 2 0.13 9 2 0.13 9 2 0.12 9 2 0.13 25 7 0.7

64 4 3 10 3 0.30 10 3 0.30 10 3 0.29 40 4 1.47 10 3 0.28
" 4 4 11 4 0.8 11 4 0,40 11 4 O 4S0.36 52.28 11 4 0.37
56 3 2 a 1 0.09 6 1 0.09 6 1 0.10 6 1 0.09 6 1 0.10
574 4 9 2 0.24 9 2 0.24 9 2 0.23 24 2 0.78 9 2 0.23
5 3 3 9 2 0.13 9 2 0.13 9 2 0.13 32 3 0.6 9 2 0.13
59 4 4 30 6 1.74 15 6 0.63 15 6 0.2 64 6 3.20 30 6 1.4
60 3 2 3 0 0.03 3 0 0.03 3 0 0.04 3 0 0.04 3 0 0.04
61 3 3 9 2 0.14 9 2 0.13 9 2 0.14 24 2 0.5 9 2 0.13
62 3 2 18 30.36 37 11 1.59 18 3 0.3 34 4 0. 57 13 3.22
63 3 2 9 2 0.12 9 2 0.13 9 2 0.13 9 2 0.12 16 2 0.29
64 3 3 9 2 0.13 9 2 0.13 9 2 0.13 16 2 0.31 9 2 0.13
6 3 2 9 2 0.13 9 2 0.13 9 2 0.12 16 2 0.26 9 2 0.12
664 2 2 1 0.15 8 1 0.14 8 1 0.14 8 1 0.14 8 1 0.14
67 3 3 9 2 0.13 9 2 0.12 9 2 0.13 24 2 0.57 9 2 0.13
68 4 2 3 0 0.04 3 0 0.04 3 0 0.04 3 0 0.04 3 0 0.04
69 4 3 48 6 2.65 63 12 3.37 27 4 1.11 33 4 1.18 102 19 7.52
70 3 2 13 4 0.26 11 3 0.21 13 4 0.28 13 4 0.2 20 4 0.46
71 3 2 6 1 0.10 6 1 0.10 6 1 0.09 6 1 0.09 a 1 0.10
723 3 6 1 0.10 6 1 0.11 6 1 0.11 6 1 0.11 6 1 0.10
73 4 2 8 1 0.15 8 1 0.14 8 1 0.14 8 1 0.14 8 1 0.14
74 4 3 9 2 0.20 9 2 0.20 9 2 0.20 44 6 2.07 9 2 0.20
175 3 2 11 3 0.19 11 3 0.19 11 3 0.19 32 3 0.79 11 3 0.19
176 3 2 9 2 0.13 9 2 0.13 9 2 0.13 9 2 0.13 16 2 0.29
77 4 3 21 5 0.83 12 4 0.49 12 4 0.49 104 6 5.00 45 7 2.15
78 4 2 17 2 0.48 17 2 0.48 17 2 0.46 17 2 0.40 17 2 0.47
79 4 2 18 3 0.56 18 3 0.55 27 4 0.95 56 4 2.45 27 4 0.95
80 3 2 3 0 0.04 3 0 0.03 3 0 0.04 3 0 0.04 3 0 0.04
81 3 3 10 3 0.17 10 3 0.17 10 3 0.17 17 3 0.36 17 3 0.35
82 3 3 9 2 0.13 9 2 0.14 9 2 0.14 25 3 0.62 9 2 0.13
83 3 3 9 2 0.13 9 2 0.14 9 2 0.14 9 2 0.14 16 2 0.31
64 3 3 22 4 0.56 11 3 0.22 1 3 0.22 32 11 1.23 11 3 0.21
853 3 10 3 0.17 10 3 0.17 10 3 0.17 41 4 1.28 31 7 0.97
86 3 2 8 1 0.10 8 1 0.10 8 1 0.09 8 1 0.10 8 1 0.10
87 4 2 8 1 0.14 8 1 0.14 8 1 0.15 8 1 0.14 8 1 0.15
88 4 2 36 5 .51 19 3 0.61 36 5 1.50 49 3 1.75 19 3 0.61
89 3 2 8 1 0.09 8 1 0.09 8 1 0.10 8 1 0.10 8 1 0.09
90 4 2 33 4 1.33 37 9 5.10 56 1413.64 73 7 3.39 51 10 9.20
91 3 11 3 0.21 11 3 0.21 13 4 0.28 11 3 0.19 18 3 0.37
92 4 4 11 4 0.42 11 4 0.43 11 4 0.42 26 4 1.05 50 11 2.84
93 4 2 18 3 0.55 18 3 0.54 27 4 0.96 25 3 0.74 27 4 0.95
94 4 2 8 1 0.14 8 1 0.14 8 1 0.15 8 1 0.14 8 1 0.14
95 4 4 10 3 0.33 10 3 0.32 10 3 0.32 10 3 0.31 30 3 1.30
96 3 2 10 2 0.15 10 2 0.16 10 2 0.16 19 2 0.37 10 2 0.15
973 3 9 2 0.14 9 2 0.14 9 2 0.14 25 3 0.63 9 2 0.14
96 3 3 10 3 0.17 10 30.17 10 3 0.16 34 30.87 10 3 0.16
99 3 3 10 3 0.17 10 3 0.17 10 30.17 17 3 0.35 22 6 0.58

100 44 10 3 0.33 10 3 0.34 10 3 0.33 25 3 0.91 17 3 0.54
Total 1356 25942.631363 29750.04 1323 27352.781 2422 2714.96 1983 34682.91

SP l100 100 1001 100 100 1oci 100 100 100 i 100 1OO 1OO 100 1OO 100

Average 11 13.562.59 0.431 13.63 2.97 0.50 13.23 2.73 0.531 24.22 2.71 0.85 19.83 3.46 0.83)

Table A.16: Performance of fine-grained multi-method planners over 100 testing
problems in the blocks-world (continued).
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Appendix B

Experimental Results: The Machine-Shop

Scheduling Domain

This appendix gives the detailed numeric information from the experiments in

the machine-shop scheduling domain. Appendix B.1 presents the experimental

results for the six single-method planners over 30 training problems. Appendix B.2

presents the experimental results for the six single-method planners and the created

multi-method planners over 100 test problems.
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B.1 Performance over 30 Training Problems

Method MEI Dec- I fiaiow 1I Lengt
Number Gomb Ihl aI r3 TrW 3 Avwwage I DWI Ta 2 Tea 3 Ave-ae

1 5 17 23 25 21.7 3 3 3 3.0
2 5 24 24 26 24.7 3 3 3 3.0
3 5 23 23 23 23.0 3 3 3 3.0
4 5 17 23 17 19.0 3 3 3 3.0
5 5 26 24 26 25.3 3 3 3 3.0
6 5 22 22 22 22.0 2 2 2 2.0
7 5 - - - - - -
8 5 39 32 39 36.7 4 4 4 40
9 5 - -

10 5 16 16 16 16.0 2 2 2 2.0
11 5 - - -
12 5 23 23 17 21.0 3 3 3 3.0
13 5 16 16 16 16.0 2 2 2 2.0
14 5 25 25 17 22.3 3 3 3 3.0
15 5 24 24 24 24.0 3 3 3 3.0
16 5 25 25 17 22.3 3 3 3 3.0
17 5 - -
16 5 - - --

19 5 - -
20 5 24 24 40 29.3 3 3 3 3.0
21 5 8 a 8 8.0 1 1 1 1.0
22 5 - - - - - - -23 5 25 25 23 24.3 3 3 3 3.0
24 5 40 40 24 34.7 3 3 3 3.0
25 5 32 32 34 32.7 4 4 4 4.0
26 5 16 16 16 16.0 2 2 2 2.0
27 5 a 8 a 8.0 1 1 1 1.0
28 5 - - - - -
29 5 16 16 16 16.0 2 2 2 2.0
30 5 24 24 24 24.0 3 3 3 3.0
Total 490 493 478 487.0 59 59 59 59.0

Solved Problems 22 22 22 22.0 22 22 22 22.0

Average 22.27 22.41 21.73 22.14 [ 2.68 2.68 2.66 2.68

Table B.1: Performance of M1 over 30 training problems in the machine-shop
scheduling domain.
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MethOd M 2

Pr e Decisiow. pINumber Goals I 1 aiWI 2 Tria 3 Averao Ti I Trial3 Trial3 A1T

1 5 17 23 25 21.7 3 3 3 3.0
2 5 24 24 26 24.7 3 3 3 3.0
3 5 23 23 23 23.0 3 3 3 3.0
4 5 17 23 17 19.0 3 3 3 3.0
5 5 26 24 26 25.3 3 3 3 3.0
6 5 22 22 22 22.0 2 2 2 2.0
7 5
8 5 39 32 39 36.7 4 4 4 4.0
9 5

10 5 16 16 16 16.0 2 2 2 2.0
* 11 5

12 5 23 23 17 21.0 3 3 3 3.0
13 5 16 16 16 16.0 2 2 2 2.0
14 5 25 25 17 22.3 3 3 3 3.0
15 5 24 24 24 24.0 3 3 3 3.0
16 5 25 25 17 22.3 3 3 3 3.0
17 5 - - - - -

19 5
20 5 24 24 40 29.3 3 3 3 3.0
21 5 8 8 a 8.0 1 1 1 1.0
22 5 - - - - - -
23 5 25 25 23 24.3 3 3 3 3.0
24 5 40 40 24 34.7 3 3 3 3.0
25 5 32 32 34 32.7 4 4 4 4.0

* 26 5 16 16 16 16.0 2 2 2 2.0
27 5 8 8 8 8.0 1 1 1 1.0
28 5 - - - - - -
29 5 16 16 16 16.0 2 2 2 2.0
30 5 24 24 24 24.0 3 3 3 3.0

Tow 490 493 478 487.0 59 59 59 59.0
Solved Problems 22 22 22 22.0 22 22 22 22.0

A A-vMe 22.27 22.41 21.73 22.14 1 2.68 2.68 2.68 2.68

Table B.2: Performance of M2 over 30 training problems in the machine-shop
scheduling domain.
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Method M 3[ Problem IDec~sonkaa wnt
Nm G Job Tril iria 2 Triai 3 Average Tri Ihai 2 Thial 3 Amr.

1 5 17 23 25 21.7 3 3 3 3.0
2 5 24 24 26 24.7 3 3 3 3.0
3 5 23 23 23 23.0 3 3 3 3.0
4 5 17 23 17 19.0 3 3 3 3.0
S 5 26 24 26 26.3 3 3 3 3.0
6 5 22 22 22 22.0 2 2 2 2.0

7 5 . .. ..
8 5 39 32 39 36.7 4 4 4 4.0
9 5 . . .. ..

10 5 16 16 16 16.0 2 2 2 2.0

11 5 . . .. ..
12 5 23 23 17 21.0 3 3 3 3.0
13 5 16 16 16 16.0 2 2 2 2.0
14 5 25 25 17 22.3 3 3 3 3.0

15 5 24 24 24 24.0 3 3 3 3.0
16 5 25 25 17 22.3 3 3 3 3.0
17 5 - - - - - -

18 5
19 5 - - -

20 5 24 24 40 29.3 3 3 3 3.0
21 5 8 8 8 8.0 1 1 1 1.0
22 5 - - - - - -
23 5 25 25 23 24.3 3 3 3 3.0
24 5 40 40 24 34.7 3 3 3 3.0

25 5 32 32 34 32.7 4 4 4 4.0
26 5 16 16 16 16.0 2 2 2 2.0

27 5 8 8 8 8.0 1 1 1 1.0
28 5 - -
29 5 16 16 16 16.0 2 2 2 2.0
30 5 24 24 24 24.0 3 3 3 3.0

Total 490 493 478 487.0 59 59 59 59.0
Solved Problem 22 22 22 22.0 22 22 22 22.0

Averae 1 22.27 22.41 21.73 22.141 2.68 2.68 2.68 2.68

Table B.3: Performance of M 3 over 30 training problems in the machine-shop
scheduling domain.
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Method M

Number _ Goas lw T"12 Tdal 3 Average Tha I r Ta2 M1 3 Aura.]
1 5 40 32 17 43.0 a 4 a 5.7
2 5 39 32 32 34.3 4 4 4 4.0
3 5 39 48 48 45.0 4 6 6 5.3
4 5 39 40 39 39.3 4 5 4 4.3
5 5 39 32 32 34.3 4 4 4 4.0
6 5 23 32 32 29.0 2 4 4 3.3
7 5 72 55 56 61.0 9 6 7 7.3
a 5 48 41 57 48.7 6 6 3 6.7
9 5 48 40 57 48.3 6 5 a 6.3

10 5 16 23 23 20.7 2 2 2 2.0
11 5 16 25 25 22.0 2 4 4 3.3
12 5 39 39 40 39.3 4 4 5 4.3
13 5 24 32 24 26.7 3 4 3 3.3
14 5 39 63 56 52.7 4 7 7 6.0
15 5 32 24 32 29.3 4 3 4 3.7
16 5 48 40 65 51.0 6 5 9 6.7
17 5 24 24 40 29.3 3 3 5 3.7
16 5 42 40 41 41.0 7 5 6 6.0
19 5 40 40 40 40.0 5 5 5 5.0
20 5 41 57 41 46.3 6 8 6 6.7
21 5 24 24 24 24.0 3 3 3 3.0
22 5 40 55 39 44.7 5 6 4 5.0
23 5 40 40 40 40.0 S 5 5 5.0
24 5 73 41 41 51.7 10 6 6 7.3
25 5 41 32 41 38.0 6 4 6 5.3
26 5 23 24 16 21.0 2 3 2 2.3
27 5 16 15 15 15.3 2 1 1 1.3
28 5 48 56 73 59.0 6 7 10 7.7
29 5 16 23 16 18.3 2 2 2 2.0
30 5 24 24 40 29.3 3 3 5 3.7

Total 1093 1093 1182 1122.71 134 134 153 140.3
Solved Problems 30 30 30 30.0 30 30 30 30.0

Average 1 36.43 36.43 39.40 37.42 4.47 4.47 5.10 4.68

Table B.4: Performance of M 4 over 30 training problems in the machine-shop
scheduling domain.
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I , .oa leaI

Medkod Ms

Numbr Gok ral T ral2 Trial 3 Average Thal 1 Trial 2 Tha 3 Avermga
1 5 so 40 41 43.7 a 5 6 6.3
2 5 32 33 40 35.0 4 5 5 4.7
3 5 57 40 32 43.0 8 5 4 5.7
4 5 41 39 76 62.0 6 4 13 7.7
5 5 33 24 32 29.7 5 3 4 4.0
6 5 23 33 33 29.7 2 5 5 4.0
7 5 66 49 57 57.3 10 7 8 8.3
8 5 39 32 40 37.0 4 4 5 4.3
9 5 75 57 47 59.7 12 8 5 8.3

10 5 16 16 16 16.0 2 2 2 2.0
11 5 16 16 16 16.0 2 2 2 2.0
12 5 32 56 31 39.7 4 7 3 4.7
13 5 24 23 24 23.7 3 2 3 2.7
14 5 93 31 40 54.7 15 3 5 7.7
15 5 31 32 32 31.7 3 4 4 3.7
16 5 40 39 49 42.7 5 4 7 5.3
17 5 49 24 24 32.3 7 3 3 4.3
18 5 33 32 59 41.3 5 4 10 6.3
19 5 24 24 42 30.0 3 3 7 4.3
20 5 50 32 32 38.0 8 4 4 5.3
21 5 24 24 33 27.0 3 3 5 3.7
22 5 40 32 32 34.7 5 4 4 4.3
23 5 65 41 49 51.7 9 6 7 7.3
24 5 32 32 40 34.7 4 4 5 4.3
25 5 48 56 40 48.0 6 7 5 6.0
26 5 16 16 23 18.3 2 2 2 2.0
27 5 16 16 15 15.7 2 2 1 1.7
28 5 49 48 76 57.7 7 6 13 8.7
29 5 16 16 16 16.0 2 2 2 2.0
30 5 24 24 31 26.3 3 3 3 3.0
Total 115 977 1118 103.0 159 123 152 144.71

Solved Prob1m9 30 30 30 30.0 30 30 30 30.0

Average 1 38.47 32.57 37.27 36.10 5.30 4.10 5.07 4.82

Table B.5: Performance of Ms over 30 training problems in the machine-shop
scheduling domain.

128



Metho MG
0rblm Deciios F PluM L~rkth

Number GoalsI Trial 1 Trial 2 Trial 3 Averae Trial 1 THad 2 Thai 3 Average

I a so 40 41 43.7 8 5 6 6.3
2 5 32 33 40 35.0 4 5 5 4.7
3 5 57 40 32 43.0 8 5 4 5.7
4 5 41 39 76 52.0 6 4 13 7.7
5 5 33 24 32 29.7 5 3 4 4.0
6 5 23 33 33 29.7 2 5 5 4.0
7 5 66 49 57 57.3 10 7 a 8.3
8 5 39 32 40 37.0 4 4 5 4.3
9 5 75 57 47 59.7 12 a 5 6.3

10 5 16 16 16 16.0 2 2 2 2.0
11 5 16 16 16 16.0 2 2 2 2.0
12 5 32 56 31 39.7 4 7 3 4.7
13 5 24 23 24 23.7 3 2 3 2.7

* 14 5 93 31 40 54.7 15 3 5 7.7
15 5 31 32 32 31.7 3 4 4 3.7
16 5 40 39 49 42.7 5 4 7 5.3
17 5 49 24 24 32.3 7 3 3 4.3
18 5 33 32 59 41.3 5 4 10 6.3
19 4 24 24 42 30.0 3 3 7 4.3
20 5 so 32 32 38.0 8 4 4 5.3
21 5 24 24 33 27.0 3 3 5 3.7
22 5 40 32 32 34.7 5 4 4 4.3
23 5 65 41 49 51.7 9 6 7 7.3
24 5 32 32 40 34.7 4 4 5 4.3
25 5 48 56 40 48.0 6 7 5 6.0
26 5 16 16 23 18.3 2 2 2 2.0
27 5 16 16 15 15.7 2 2 1 1.7
28 5 49 48 76 57.7 7 6 13 8.7

* 29 5 16 16 16 16.0 2 2 2 2.0
30 5 24 24 31 26.3 3 3 3 3.0

TSolvedProblem
1 1154 977 1118 1083.0 159 123 152 144:7SlePrbes 30 30 30 30.0 30 30 30 30.0

Average 1 38.47 32.57 37.27 36.10 5.30 4.10 5.07 4.82)

Table B.6: Performance of M6 over 30 training problems in the machine-shop
* scheduling domain.

B.2 Performance over 100 Testing Problems

The entries in the tables are defined as follows:

N: Problem number D: Number of decisions

B: Number of blocks L: Plan length

G: Number of goal conjuncts C: CPU time (sec.)

SP: Solved problems.

129



N G DL C DL C DL C D L C D L C D L C
1 5 23 3 0.67 23 3 0.67 23 3 0.68 40 5 1.23 40 5 1.24 40 5 1.25
2 5 26 3 0.53 26 3 0.63 26 3 0.4 41 6 1.05 41 6 1.05 41 6 1.06
3 5 17 30.33 17 3 0.33 17 30.33 71 8 2.32 71 8 2.33 71 8 2.34
4 5 17 3 0.33 17 30.33 17 3 0.33 50 8 1.73 50 8 1.74 506 1.74
5 5 26 3 0.54 26 3 0.4 26 3 0.4 41 6 1.07 41 6 1.07 41 6 1.07
6 5 16 2 0.30 16 2 0.30 16 2 0.31 42 7 1.63 42 7 1.64 42 7 15
7 5- -. - - ---- - - 40 5 0.99 40 1 0.96 40 5O.M
a 5 32 4 0.77 32 4 0.77 32 4 0.79 32 4 0.75 32 4 0.76 32 4 0.75
9 5- -. - ------ - 57 5 1.70 57 5 1.67 57 83 IA

10 5 16 2 0.31 16 2 0.31 16 2 0.31 23 2 0.48 23 2 0.49 23 2 0.49
11 5- --.--- ----- - . 34 6 1.15 34 6 1.15 34 6 1.18
12 5 25 3 0.74 25 3 0.74 25 3 0.77 50 8 1.78 50 8 1.76 50 6 1.77
13 5 16 2 0.31 16 2 0.31 16 2 0.31 24 3 0.55 24 3 0.55 24 3 0.56
14 5 17 30.33 17 3 0.33 17 30.33 5 6 1.43 55 6 1.43 55 6 1.43
15 5 24 30.50 24 3 0.50 24 3 0.51 24 3 0.52 24 3 0.52 24 3 0.52
16 5 17 3 0.33 17 3 0.33 17 3 0.33 81 11 2.97 51 11 2.96 81 11 2.96
17 5 .. . .- -24 3 0.55 24 3 0.56 24 3 0.56
16 5- - -- 58 9 1.76 58 9 1.76 58 9 1.77
19 5- -- - -. 47 S 1.29 47 5 1.27 47 S 1.28
20 5 24 3 0.52 24 3 0.52 24 3 0.49 32 4 0.76 32 4 0.75 32 4 0.75
21 5 8 1 0.17 8 1 0.17 8 1 0.17 15 1 0.29 15 1 0.30 15 1 0.29
22 5- - ... -41 6 1.08 41 6 1.08 41 6 1.07
23 5 25 3 0.75 25 3 0.75 25 3 0.80 41 6 1.08 41 6 1.08 41 6 1.07
24 5 30 3 0.77 30 3 0.77 30 3 0.78 40 5 0.99 40 5 0.99 40 5 0.99
25 5 34 4 0.76 34 4 0.76 34 4 0.76 41 6 1.04 41 6 1.06 41 6 1.05
26 5 16 2 0.31 16 2 0.31 16 2 0.31 16 2 0.31 16 2 0.31 16 2 0.31
27 5 8 1 0.17 8 1 0.17 8 1 0.17 15 1 0.29 15 1 0.30 15 1 0.30
28 5 -.. .-56 7 1.59 56 7 1.59 56 7 1.59
29 5 16 2 0.31 16 2 0.31 16 2 0.31 16 2 0.31 16 2 0.31 16 2 0.31
30 5 24 3 0.51 24 3 0.51 24 3 0.51 24 3 0.52 24 3 0.51 24 3 0.52
31 5 8 1 0.16 8 1 0.16 8 1 0.17 15 1 0.30 15 1 0.29 15 1 0.29
32 5- -- - 48 6 1.23 48 6 1.24 48 6 1.23
33 5 26 3 0.54 26 3 0.54 26 3 0.54 33 5 0.81 33 5 0.81 33 5 0.81
34 5 24 3 0.50 24 3 0.50 24 3 0.52 24 3 0.51 24 3 0.50 24 3 0.51
35 5 24 3 0.52 24 3 0.52 24 3 0.51 24 3 0.51 24 3 0.51 24 3 0.51
36 5 - - - ------ - . 40 5 0.99 40 S 0.99 40 5 0.99
37 5 --- 31 3 0.69 31 3 0.69 31 3 0.69
38 5- -- -- 32 4 0.76 32 4 0.77 32 4 0.77
39 5 -.. . . - 34 6 1.07 34 6 1.07 34 6 1.08
40 5 16 2 0.30 16 2 0.30 16 2 0.31 16 2 0.31 16 2 0.31 16 2 0.31
41 5 16 2 0.31 16 2 0.31 16 2 0.31 16 2 0.32 16 2 0.31 16 2 0.31
42 5 - - ---- -40 5 0.96 40 5 0.96 40 5 0.96
43 5 - - - -- -- 40 5 0.97 40 5 0.95 40 5 0.97
44 5 16 2 0.30 16 2 0.30 16 2 0.30 23 2 0.47 23 2 0.47 23 2 0.46
45 6 33 4 1.01 33 4 1.01 33 4 0.95 73 10 2.31 73 10 2.30 73 10 2.29
46 5 24 3 0.54 24 3 0.54 24 3 0.51 24 3 0.52 24 3 0.53 24 3 0.52
47 5 16 20.32 16 20.32 16 20.30 23 20.47 23 20.47 23 20.47
48 5 24 20.75 24 20.75 24 20.72 3 50.96 33 50.97 33 50.97
49 5 23 3 0.59 23 3 0.59 23 3 0.58 49 7 1.41 49 7 1.43 49 7 1.43
50 5------ - . .------- --- 65 9 2.02 65 9 2.02 65 9 2.03

Table B.7: Performance of single-method planners over 100 testing problems in the
machine-shop scheduling domain.
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1 Proo H C, I5 M2 D, L )W

N G D L C D L C DL C D L C D L C DL C

51 a a 10.18 8 0.18 8 1 0.16 8 180.1 1 0.17 8 1 0.16
2 S 24 30. 24 3 0.63 24 3 0.53 66 12 2.85 68 12 2.84 68 12 2.84

53 5. . - -32 4 0.74 32 4 0.74 32 4 0.74
54 5. ". 63 7 1.78 63 7 1.79 63 T I.7
55 5 26 3 0.54 26 30.4 26 3 0.54 40 5 0.99 40 5 0.98 40 5 0.9
56 5 --- .. . . .. . . .64 8 1.71 64 8 1.72 64 8 1.73
57 6 22 20. 22 20. 22 2 0.55 42 7 1. 42 7 1.52 42 7 1.55
6 5. . . . . .. 16 2 0.36 16 20 16 2 0.36

59 5 8 1 0.18 8 1 0.18 a 1 0.17 16 2 0.37 16 2 cr 16 2 0.36
60 5 16 20.33 16 20.33 16 20.31 24 3 0.55 24 3 IL 24 30.55
61 5 - -.- .. . ... . .. .. . 25 40.9 25 4 25 40.69
62 5 16 2 0.32 16 2 0.32 16 2 0.32 16 2 0.31 16 2 0.31 16 2 0.31
63 5 24 3 0.63 24 3 0.53 24 3 0.52 31 3 0.68 31 3 OM 31 3 0.69
64 5 24 2 0.76 24 20.76 24 20.74 23 20.4 23 2 0.47 23 20.4S
65 5 -. . . . .. 40 5 0. 40 51.00 40 5 0.99
66 5 8 1 0.18 8 1 0.16 8 1 0.16 16 2 OM 16 2 0.37 16 2 0.36
67 5 3 00.06 3 00.06 3 0 0.05 3 00.05 3 0 0.05 3 0 0.05
66 5 24 3 0.53 24 3 0.53 24 3 0.51 24 3 0.51 24 3 0.52 24 3 0.51
69 5 24 3 0.52 24 3 0.52 24 3 0.50 32 4 0.75 32 4 0.76 32 4 0.76
TO 5 34 4 0.79 34 40.79 34 40.77 49 7 1.31 49 7 1.29 49 7 1.32
71 5 24 2 0.75 24 2 0.75 24 2 0.73 24 3 0.55 24 3 0.55 24 30.54
72 5 16 2 0.32 16 2 0.32 16 2 0.32 16 2 0.32 16 2 0.31 16 2 0.31
73 5 39 4 1.02 39 4 1.02 39 4 0.99 47 5 1.17 47 5 1.17 47 5 1.18
74 5 24 20.78 24 2 0.78 24 2 0.74 33 5 0.99 33 5 0.98 33 5 0.99
75 5 22 2 0.59 22 2 0.59 22 2 0.55 32 4 0.91 32 4 0.91 32 4 0.90
76 5 16 2 0.33 16 2 0.33 16 2 0.31 16 2 0.30 16 2 0.31 16 2 0.31
77 5 16 2 0.31 16 2 0.31 16 2 0.30 16 2 0.30 16 2 0.31 16 2 0.31
78 5. . ............. .48 6 1.36 48 6 1.36 48 6 1.36
79 5. . . . .. 32 4 0.74 32 4 0.74 32 4 0.74
80 5 .. .. 41 6 1.20 41 6 1.20 41 6 1.20
81 5 24 2 0.74 24 2 0.74 24 2 0.72 60 11 2.57 60 11 2.568 60 11 3.57
82 5. - 31 3 0.69 31 3 0.69 31 3 0.69
83 5 8 1 0.18 8 1 0.18 8 1 0.17 16 2 0.37 16 2 0.37 16 2 0.37
84 5 16 2 0.32 16 2 0.32 16 2 0.30 24 3 0.55 24 3 0.56 24 3 0.56
85 5 24 3 0.54 24 3 0.54 24 3 0.51 32 4 0.73 32 4 0.74 32 4 0.73
86 5 24 2 0.74 24 2 0.74 24 2 0.72 24 3 0.55 24 3 0.54 24 3 0.54
87 5.- 42 7 1.55 42 7 1.54 42 7 1.53
88 5 31 4 0.83 31 4 0.83 31 4 0.80 58 9 1.78 58 9 1.78 58 9 1.78
89 5 46 3 1.36 46 3 1.36 46 3 1.32 32 4 0.77 32 4 0.77 32 4 0.76
90 5 - 17 3 0.41 17 3 0.39 17 3 0.40
91 5 24 2 0.76 24 2 0.76 24 2 0.73 24 3 0.54 24 3 0.55 24 3 0.55
92 5 8 1 0.17 8 1 0.17 8 1 0.16 15 1 0.30 15 1 0.29 15 1 0,30
93 5. . . . . . . - - 24 3 0.55 24 3 0.56 24 3 0.55
94 5 16 2 0.32 16 2 0.32 16 2 0.31 16 2 0.31 16 2 0.31 16 2 0.31
95 5 8 1 0.17 8 1 0.17 8 1 0.17 24 3 0.61 24 3 0.61 24 3 0.61
96 5 22 20.58 22 2 0.58 22 2 0.55 24 3 0.55 24 3 0.54 24 3 0.54
97 5 17 3 0.36 17 3 0.36 17 3 0.33 40 5 1.00 40 5 0.98 40 5 0.98
98 5 . . .. . .. . .- ... 32 4 0.77 32 4 0.77 32 4 0.76
99 5 24 3 0.63 24 3 0.53 24 3 0.52 24 3 0.51 24 3 0.51 24 3 0.51

100 SO 34 4 0.791 34 4 0.79 34 4 0.77 47 5 1.16 47 5 1.18 47 5 1.17

SP 11 1451 17044.191 1451 17044.191 1451 17043.381 3397 44791.981 3397 44792.001 3397 44792.07
70 70 70 70 70 70 70 70 70 100 100 100 100100 1001 100 100 100

AVG 11 20.732.43 0.631 20.732.43 0.631 20.732.43 0.621 33.974.47 0.921 33.974.47 0.921 33974.47 0.92

Table B.8: Performance of single-method planners over 100 testing problems in the
machine-shop scheduling domain (continued).
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Probleum -)4 1-M M3 -Aff I3- M_
N GI D L C ID L C D L C D L C

1 5 2 3 0.83 28 3 0.64 18- 40.51 l 4 O.,T
2 5 31 3 0.71 31 3 0.70 27 6 0.71 27 6 0.71
3 5 23 3 0.50 22 3 0.50 18 4 0.42 16 4 0.42
4 5 22 3 0.49 22 3 0.50 17 3 0.35 17 3 0.36
5 5 31 3 0.70 31 3 0.71 27 6 0.73 77 6 0.70
6 5 21 2 0.46 21 2 0.46 17 3 0.41 17 3 0.41
7 5 5 1.43 58 5 1.43 26 5 0.68 26 50.67
a 5 39 4 0.96 39 4 0.96 32 4 0.84 32 4 0.4
9 5 74 7 1.90 74 7 1.92 27 6 0.71 27 6 0.72

10 5 21 2 0.49 21 2 0.49 16 2 0.33 16 2 0.33
11 5 24 2 0.57 24 2 0.58 9 2 0.24 9 2 0.34
12 5 22 3 0.51 22 3 0.50 18 4 0.43 16 4 0.43
13 5 21 2 0.49 21 2 0.48 16 2 0.34 16 2 0.33
14 5 30 3 0.86 30 3 0.5 18 4 0.43 16 4 0.43
15 5 29 3 0.68 29 3 0.69 24 3 0.57 24 3 0.57
16 5 28 3 0.76 28 3 0.75 16 4 0.43 18 4 0.43
17 5 67 7 2.01 67 7 1.97 17 3 0.41 17 3 0.4:
1 a 49 6 1.37 49 6 1.38 21 7 0.50 21 7 0.50
19 5 60 7 2.05 60 7 2.05 17 3 0.41 17 3 0.41
20 5 61 3 1.88 61 3 1.89 24 3 0.5 24 3 0.55
21 5 13 1 0.25 13 1 0.26 8 1 0.16 8 1 0.16
22 5 90 12 3.30 90 12 3.30 17 3 0.37 17 3 0.38
23 3 22 3 0.49 22 3 0.50 18 4 0.43 18 4 0.43
24 5 29 3 0.71 29 3 0.69 24 3 0.56 24 3 0.56
25 5 39 4 0.94 39 4 0.95 32 4 0.80 32 4 0.81
26 5 21 2 0.47 21 2 0.48 16 2 0.33 16 2 0.33
27 5 13 1 0.24 13 1 0.24 8 1 0.17 8 1 0.16
28 5 73 6 1.85 73 6 1.89 28 7 0.74 28 7 0.75
29 5 21 2 0.49 21 2 0.47 16 2 0.33 16 2 0.34
30 5 29 3 0.67 29 3 0.68 24 3 0.56 24 3 0.56
31 5 13 1 0.25 13 1 0.25 8 1 0.16 8 1 0.17
32 5 111 16 4.47 111 16 4.47 26 5 0.67 26 5 0.68
33 5 31 3 0.71 31 3 0.71 24 3 0.54 24 3 0.57
34 5 29 3 0.69 29 3 0.70 24 3 0.55 24 3 0.55
35 5 29 3 0.68 29 3 0.66 24 3 0.56 24 3 0.56
36 5 99 14 3.99 99 14 3.98 18 4 0.45 18 4 0.44
37 5 40 4 0.94 40 4 0.93 17 3 0.37 17 3 0.38
38 5 41 4 1.00 41 4 1.01 18 4 0.45 18 4 0.45
39 5 33 4 0.86 33 4 0.86 18 4 0.51 18 4 0.51
40 5 21 2 0.47 21 2 0.47 16 2 0.33 16 2 0.33
41 5 21 2 0.48 21 2 0.48 16 2 0.32 16 2 0.33
42 5 49 5 1.15 49 5 1.15 19 5 0.47 19 5 0.47
43 5 60 5 1.74 60 5 1.74 26 5 0.68 26 5 0.68
44 5 21 2 0.47 21 2 0.47 16 2 0.33 16 2 0.33
45 5 36 4 0.98 36 4 1.00 25 4 0.60 25 4 0.60
46 5 29 3 0.69 29 3 0.69 24 3 0.56 24 3 0.56
47 5 21 2 0.47 21 2 0.47 17 3 0.41 17 3 0.40
48 5 27 2 0.73 27 2 0.74 16 2 0.32 16 2 0.33
49 5 28 3 0.75 28 3 0.75 18 4 0.43 18 4 0.44
so 5 58 5 1.40 58 5 1.38 26 5 0.69 26 5 0.68

Table B.9: Performance of multi-method planners over 100 testing problems in the
machine-shop scheduling domain.
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11 Probe If_____ M3-M, M2 -..5  I__ M__-6_
DN G D L C D L C D L C D L C

51 5 13 1 0.24 13 1 0.25 8 1 0.16 8 1 0.16
52 5 60 3 2.04 60 3 2.04 24 3 0.6 24 3 0.57
53 5 67 5 1.91 67 5 1.91 26 5 0.70 26 5 0.70
54 5 102 14 3.97 102 14 3.96 28 7 0.79 28 7 0.79
55 5 29 3 0.69 29 3 0.69 26 5 0.67 26 5 0.68
56 5 75 10 2.19 75 10 2.21 19 5 0.42 19 5 0.42
37 5 21 2 0.46 21 2 0.47 17 3 0.40 17 3 0.40
58 5 42 6 1.36 42 6 1.36 9 2 0.24 9 2 0.24
59 5 13 1 0.25 13 1 0.24 8 1 0.17 a 1 0.17
60 5 27 2 0.72 27 2 0.72 17 3 0.40 17 3 0.40
61 5 24 2 0.57 24 2 0.57 9 2 0.24 9 2 0.24
62 5 21 2 0.47 21 2 0.48 16 2 0.33 16 2 0.33
63 5 29 3 0.68 29 3 0.68 24 3 0.55 24 3 0.56
64 5 29 2 0.83 29 2 0.82 16 2 0.33 16 2 0.33
65 5 59 4 1.65 59 4 1.65 26 5 0.68 26 5 0.69
66 5 13 1 0.24 13 1 0.24 8 1 0.17 a 1 0.16
67 5 3 0 0.04 3 0 0.05 3 0 0.05 3 0 0.05
68 5 29 3 0.68 29 3 0.68 24 3 0.54 24 3 0.55
69 5 45 3 1.24 45 3 1.24 24 3 0.56 24 3 0.55
70 5 37 4 0.93 37 4 0.93 34 6 0.95 34 6 0.96
71 5 29 2 0.82 29 2 0.82 17 3 0.41 17 3 0.42
72 5 21 2 0.47 21 2 0.47 16 2 0.33 16 2 0.33
73 5 37 4 0.93 37 4 0.91 27 6 0.72 27 6 0.73
74 5 29 2 0.81 29 2 0.82 17 3 0.42 17 3 0.40
75 5 29 2 0.80 29 2 0.80 16 2 0.33 16 2 0.33
76 5 21 2 0.47 21 2 0.47 16 2 0.32 16 2 0,33
77 5 21 2 0.47 21 2 0.47 16 2 0.33 16 2 0.33
78 5 48 5 1.27 48 5 1.28 18 4 0.45 18 4 0.45
79 5 66 4 1.83 66 4 1.85 26 5 0.68 26 5 0.68
80 5 40 4 0.93 40 4 0.93 20 6 0.52 20 6 0.51
81 5 21 2 0.47 21 2 0.48 26 2 0.33 16 2 0.34
82 5 42 3 1.04 42 3 1.04 17 3 0.41 17 3 0.41
83 5 13 1 0.24 13 1 0.25 8 1 0.17 8 1 0.17
84 5 21 2 0.46 21 2 0.47 16 2 0.33 16 2 0.33
85 5 29 3 0.70 29 3 0.69 24 3 0.56 24 3 0.56
86 5 27 2 0.71 27 2 0.72 17 3 0.40 17 3 0.41
87 5 85 11 3.07 85 11 3.09 17 3 0.42 17 3 0.42

* 88 5 30 4 0.74 30 4 0.73 26 5 0.67 26 5 0.67
89 5 35 3 0.94 35 3 0.94 25 4 0.64 25 4 0.64
90 5 32 3 0.77 32 3 0.78 17 3 0.44 17 3 0.44
91 5 29 2 0.82 29 2 0.82 17 3 0.40 17 3 0.40
92 5 13 1 0.25 13 1 0.25 8 1 0.17 8 1 0.17
93 5 57 4 1.40 57 4 1.40 17 3 0.41 17 3 0.41
94 5 21 2 0.47 21 2 0.48 16 2 0.34 16 2 0.33
95 5 13 1 0.25 13 1 0.25 8 1 0.16 8 1 0.17

0 96 5 29 2 0.81 29 2 0.82 16 2 0.33 16 2 0.34
97 5 28 3 0.76 28 3 0.75 18 4 0.42 18 4 0.43
98 5 34 4 0.83 34 4 0.83 18 4 0.45 18 4 0.48
99 5 29 3 0.68 29 3 0.69 24 3 0.56 24 3 0.57

100 5 39 4 0.96 39 4 0.96 33 5 0.87 33 5 0.88
Total 3591 358 98.31 3591 38 98.49 1907 329 45.75 1907 329 45.94

Tta l 0 1 00 358 983 1 00 3 9. 190 7 02 10 10 12 459

* AVG i 35.91 3.58 0.98 35.91 3.58 0.98 1 19.07 3.29 0.46 19.07 3.29 0.46

Table B.10: Performance of multi-method planners over 100 testing problems in
the machine-shop scheduling domain (continued).
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